Abstract
We introduce a hybrid abstractive summarisation approach combining hierarchical VAEs with LLMs to produce clinically meaningful summaries from social media user timelines, appropriate for mental health monitoring. The summaries combine two different narrative points of view: (a) clinical insights in third person, generated by feeding into an LLM clinical expert-guided prompts, and importantly, (b) a temporally sensitive abstractive summary of the user's timeline in first person, generated by a novel hierarchical variational autoencoder, TH-VAE. We assess the generated summaries via automatic evaluation against expert summaries and via human evaluation with clinical experts, showing that timeline summarisation by TH-VAE results in more factual and logically coherent summaries rich in clinical utility and superior to LLM-only approaches in capturing changes over time.
Original language | English |
---|---|
Title of host publication | 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Proceedings of the Conference |
Editors | Lun-Wei Ku, Andre Martins, Vivek Srikumar |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 14651-14672 |
Number of pages | 22 |
ISBN (Electronic) | 9798891760998 |
DOIs | |
State | Published - 2024 |
Event | Findings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Hybrid, Bangkok, Thailand Duration: 11 Aug 2024 → 16 Aug 2024 |
Publication series
Name | Proceedings of the Annual Meeting of the Association for Computational Linguistics |
---|---|
ISSN (Print) | 0736-587X |
Conference
Conference | Findings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 |
---|---|
Country/Territory | Thailand |
City | Hybrid, Bangkok |
Period | 11/08/24 → 16/08/24 |
Bibliographical note
Publisher Copyright:© 2024 Association for Computational Linguistics.