Combining Hierachical VAEs with LLMs for clinically meaningful timeline summarisation in social media

Jiayu Song, Jenny Chim, Adam Tsakalidis, Julia Ive, Dana Atzil-Slonim, Maria Liakata

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We introduce a hybrid abstractive summarisation approach combining hierarchical VAEs with LLMs to produce clinically meaningful summaries from social media user timelines, appropriate for mental health monitoring. The summaries combine two different narrative points of view: (a) clinical insights in third person, generated by feeding into an LLM clinical expert-guided prompts, and importantly, (b) a temporally sensitive abstractive summary of the user's timeline in first person, generated by a novel hierarchical variational autoencoder, TH-VAE. We assess the generated summaries via automatic evaluation against expert summaries and via human evaluation with clinical experts, showing that timeline summarisation by TH-VAE results in more factual and logically coherent summaries rich in clinical utility and superior to LLM-only approaches in capturing changes over time.

Original languageEnglish
Title of host publication62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Proceedings of the Conference
EditorsLun-Wei Ku, Andre Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages14651-14672
Number of pages22
ISBN (Electronic)9798891760998
DOIs
StatePublished - 2024
EventFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Hybrid, Bangkok, Thailand
Duration: 11 Aug 202416 Aug 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

ConferenceFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityHybrid, Bangkok
Period11/08/2416/08/24

Bibliographical note

Publisher Copyright:
© 2024 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'Combining Hierachical VAEs with LLMs for clinically meaningful timeline summarisation in social media'. Together they form a unique fingerprint.

Cite this