Colloquium: Anomalous statistics of laser-cooled atoms in dissipative optical lattices

Gadi Afek, Nir Davidson, David A. Kessler, Eli Barkai

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Diffusion occurs in numerous physical systems throughout nature, drawing its generality from the universality of the central limit theorem. Approximately a century ago it was realized that an extension to this type of dynamics can be obtained in the form of "anomalous"diffusion, where distributions are allowed to have heavy power-law tails. Owing to a unique feature of its momentum-dependent dissipative friction force, laser-cooled atomic ensembles can be used as a test bed for such dynamics. The interplay between laser cooling and anomalous dynamics bears deep predictive implications for fundamental concepts in both equilibrium and nonequilibrium statistical physics. The high degree of control available in cold-atom experiments allows for the parameters of the friction to be tuned, revealing transitions in the dynamical properties of the system. Rare events in both the momentum and spatial distributions are described by non-normalized states using tools adapted from infinite ergodic theory. This leads to new experimental and theoretical results that illuminate the various features of the system.

Original languageEnglish
Article number031003
JournalReviews of Modern Physics
Volume95
Issue number3
DOIs
StatePublished - Jul 2023

Bibliographical note

Publisher Copyright:
© 2023 American Physical Society.

Funding

The authors thank Erez Aghion and Ariel Amir for their valuable input on the manuscript, and Erez Aghion, Andreas Dechant, Eric Lutz, and Yoav Sagi for important contributions to the work discussed in this Colloquium. D. A. K. and E. B. acknowledge the support of Israel Science Foundation Grant No. 1614/21.

FundersFunder number
Israel Science Foundation1614/21

    Fingerprint

    Dive into the research topics of 'Colloquium: Anomalous statistics of laser-cooled atoms in dissipative optical lattices'. Together they form a unique fingerprint.

    Cite this