Abstract
Peptide-based nanomaterials can serve as promising drug delivery agents, facilitating the release of active pharmaceutical ingredients while reducing the risk of adverse reactions. We previously demonstrated that Cyclo-Histidine-Histidine (Cyclo-HH), co-assembled with cancer drug Epirubicin, zinc, and nitrate ions, can constitute an attractive drug delivery system, combining drug self-encapsulation, enhanced fluorescence, and the ability to transport the drug into cells. Here, we investigated both computationally and experimentally whether Cyclo-HH could co-assemble, in the presence of zinc and nitrate ions, with other cancer drugs with different physicochemical properties. Our studies indicated that Methotrexate, in addition to Epirubicin and its epimer Doxorubicin, and to a lesser extent Mitomycin-C and 5-Fluorouracil, have the capacity to co-assemble with Cyclo-HH, zinc, and nitrate ions, while a significantly lower propensity was observed for Cisplatin. Epirubicin, Doxorubicin, and Methorexate showed improved drug encapsulation and drug release properties, compared to Mitomycin-C and 5-Fluorouracil. We demonstrated the biocompatibility of the co-assembled systems, as well as their ability to intracellularly release the drugs, particularly for Epirubicin, Doxorubicin, and Methorexate. Zinc and nitrate were shown to be important in the co-assembly, coordinating with drugs and/or Cyclo-HH, thereby enabling drug-peptide as well as drug-drug interactions in successfully formed nanocarriers. The insights could be used in the future design of advanced cancer therapeutic systems with improved properties.
Original language | English |
---|---|
Pages (from-to) | 2309-2324 |
Number of pages | 16 |
Journal | ACS Applied Bio Materials |
Volume | 7 |
Issue number | 4 |
Early online date | 13 Mar 2024 |
DOIs | |
State | Published - 15 Apr 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2024 The Authors. Published by American Chemical Society
Funding
E.G. acknowledges support from NSF-BSF Joint Funding Research Grants (no. 2020752). P.T. acknowledges support from the National Science Foundation (Award Number 2104558; NSF-BSF: Computational and Experimental Design of Novel Peptide Nanocarriers for Cancer Drugs). All MD simulations and energy calculations were performed using computational resources at the High Performance Research Computing facility, the College of Engineering, and the Artie McFerrin Department of Chemical Engineering at Texas A&M University.
Funders | Funder number |
---|---|
NSF-BSF | 2020752 |
National Science Foundation | 2104558 |
Keywords
- cancer drugs
- drug encapsulation
- molecular dynamics simulations
- peptide co-assembly with drugs
- peptide self-assembly