CLOSED SUBGROUPS IN PRO-V TOPOLOGIES AND THE EXTENSION PROBLEM FOR INVERSE AUTOMATA

S. Margolis, SAPIR M., WEIL P.

Research output: Contribution to journalArticlepeer-review

Abstract

We relate the problem of computing the closure of a finitely generated subgroup of the free group in the pro-V topology, where V is a pseudovariety of finite groups, with an extension problem for inverse automata which can be stated as follows: given partial one-to-one maps on a finite set, can they be extended into permutations generating a group in V? The two problems are equivalent when V is extension-closed. Turning to practical computations, we modify Ribes and Zalesskiĭ's algorithm to compute the pro-p closure of a finitely generated subgroup of the free group in polynomial time, and to effectively compute its pro-nilpotent closure. Finally, we apply our results to a problem in finite monoid theory, the membership problem in pseudovarieties of inverse monoids which are Mal'cev products of semilattices and a pseudovariety of groups. Résumé: Nous établissons un lien entre le problème du calcul de l'adhéerence d'un sous-groupe finiment engendré du groupe libre dans la topologie pro-V, oú V est une pseudovariété de groupes finis, et un probléme d'extension pour les automates inversifs qui peut être énoncé de la faç con suivante: étant données des transformations partielles injectives d'un ensemble fini, peuvent-elles être étendues en des permutations qui engendrent un groupe dans V? Les deux problèmes sont équivalents si V est fermée par extensions. Nous intéressant ensuite aux calculs pratiques, nous modifions l'algorithme de Ribes et Zalesskiĭ pour calculer l'adhérence pro-p d'un sous-groupe finiment engendré du groupe libre en temps polynomial et pour calculer effectivement sa clôture pro-nilpotente. Enfin nous appliquons nos résultats à un problème de théorie des monoïdes finis, celui de de l'appartenance dans les pseudovariétés de monoïdes inversifs qui sont des produits de Mal'cev de demi-treillis et d'une pseudovariété de groupes Read More: http://www.worldscientific.com/doi/abs/10.1142/S0218196701000498
Original languageAmerican English
Pages (from-to)405-445
JournalInternational Journal of Algebra and Computation
Volume11
Issue number4
StatePublished - 2001

Fingerprint

Dive into the research topics of 'CLOSED SUBGROUPS IN PRO-V TOPOLOGIES AND THE EXTENSION PROBLEM FOR INVERSE AUTOMATA'. Together they form a unique fingerprint.

Cite this