Classical and quantum modeling of Li and Na diffusion in FePO4

Mudit Dixit, Hamutal Engel, Reuven Eitan, Doron Aurbach, Mikhael D. Levi, Monica Kosa, Dan Thomas Major

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


Lithium diffusion in olivine phosphates has been widely studied both experimentally and theoretically. However, nuclear quantum effects (NQEs) of the Li ions have not been accounted for in theoretical studies thus far. In the current work, we compared Li and Na diffusion in Li0.25FePO4 and Na0.25FePO4 by computing density functional theory based classical diffusion barriers in conjunction with NQEs for the Li and Na ions. The NQEs are computed using a novel three-dimensional wave function method based on a path integral formulation. The calculations of both the potential and free energy diffusion barriers suggest that Li diffusion is faster than Na diffusion, in agreement with recent experiments. The NQEs for lithium ions in Li0.25FePO4 are higher than those for sodium ions in Na0.25FePO4. Although the contribution of NQEs to the computed Li and Na ion diffusion rates is rather small, the quantum behavior of the Li ions is unusual. Indeed, we observe a reduction in the computed diffusion rate for Li ions due to quantization. We ascribe this effect to the ability of FePO4 to tightly bind the Li ions in the transient tetrahedral transition state, which reduces the classical diffusion barrier but also enhances quantum confinement.

Original languageEnglish
Pages (from-to)15801-15809
Number of pages9
JournalJournal of Physical Chemistry C
Issue number28
StatePublished - 16 Jul 2015

Bibliographical note

Publisher Copyright:
© 2015 American Chemical Society.


Dive into the research topics of 'Classical and quantum modeling of Li and Na diffusion in FePO4'. Together they form a unique fingerprint.

Cite this