TY - JOUR
T1 - Chemical composition and potential ethanol yield of jerusalem artichoke in a semi-arid region of China
AU - Liu, Zu Xin
AU - Steinberger, Yosef
AU - Chen, Xu
AU - Wang, Ji Shi
AU - Xie, Guang Hui
N1 - Publisher Copyright:
© Z.X. Liu et al. 2015.
PY - 2015
Y1 - 2015
N2 - The study was aimed to evaluate the potential of existing genotypes of Jerusalem artichoke (Helianthus tuberosus L.) as biomass feedstock for ethanol production. We investigated the biomass productivity and chemical composition of twenty-six Jerusalem artichoke clones grown in a semi-arid region of China. Jerusalem artichoke was demonstrated to be a sustainable feedstock for bioethanol production. All structural and non-structural carbohydrates in whole plant of Jerusalem artichoke could be 5000 L/ha. The above-ground biomass of Jerusalem artichoke could be a promising feedstock for cellulosic ethanol. The ethanol potential yield from cellulose and hemicellulose in above-ground biomass were 1821 to 5930 L/ha, contributing 29.8-66.4% of the total ethanol yield, which could be as high as that from switchgrass and sweet sorghum stem. Large variation among the investigated genotypes for carbohydrates makes it possible to select suitable clones to be used in bioethanol production in semiarid regions. Clones HB-3, HEN-3, IM-1, SC-1, SHX-3, SX-2 and ZJ-2 yielded tuber total soluble sugar higher than 4.0 t/ha. Clones BJ-4, HUB-2, HUN-2, QH-1, SD-2 and SHH-1 produced more than 5.0 t/ha cellulose and hemicellulose in above-ground biomass. Clones BJ-4 and HUB-2 have the highest ethanol potential based on structural carbohydrates. These clones were promising material if used as biofuel feedstock in this growth condition.
AB - The study was aimed to evaluate the potential of existing genotypes of Jerusalem artichoke (Helianthus tuberosus L.) as biomass feedstock for ethanol production. We investigated the biomass productivity and chemical composition of twenty-six Jerusalem artichoke clones grown in a semi-arid region of China. Jerusalem artichoke was demonstrated to be a sustainable feedstock for bioethanol production. All structural and non-structural carbohydrates in whole plant of Jerusalem artichoke could be 5000 L/ha. The above-ground biomass of Jerusalem artichoke could be a promising feedstock for cellulosic ethanol. The ethanol potential yield from cellulose and hemicellulose in above-ground biomass were 1821 to 5930 L/ha, contributing 29.8-66.4% of the total ethanol yield, which could be as high as that from switchgrass and sweet sorghum stem. Large variation among the investigated genotypes for carbohydrates makes it possible to select suitable clones to be used in bioethanol production in semiarid regions. Clones HB-3, HEN-3, IM-1, SC-1, SHX-3, SX-2 and ZJ-2 yielded tuber total soluble sugar higher than 4.0 t/ha. Clones BJ-4, HUB-2, HUN-2, QH-1, SD-2 and SHH-1 produced more than 5.0 t/ha cellulose and hemicellulose in above-ground biomass. Clones BJ-4 and HUB-2 have the highest ethanol potential based on structural carbohydrates. These clones were promising material if used as biofuel feedstock in this growth condition.
KW - Biomass yield
KW - Cellulose
KW - Chemical composition
KW - Ethanol
KW - Helianthus tuberosus L
KW - Total soluble sugar
UR - http://www.scopus.com/inward/record.url?scp=84930938859&partnerID=8YFLogxK
U2 - 10.4081/ija.2015.603
DO - 10.4081/ija.2015.603
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84930938859
SN - 1125-4718
VL - 10
SP - 34
EP - 43
JO - Italian Journal of Agronomy
JF - Italian Journal of Agronomy
IS - 1
ER -