CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed

Wonmuk Hwang, Steven L. Austin, Arnaud Blondel, Eric D. Boittier, Stefan Boresch, Matthias Buck, Joshua Buckner, Amedeo Caflisch, Hao Ting Chang, Xi Cheng, Yeol Kyo Choi, Jhih Wei Chu, Michael F. Crowley, Qiang Cui, Ana Damjanovic, Yuqing Deng, Mike Devereux, Xinqiang Ding, Michael F. Feig, Jiali GaoDavid R. Glowacki, James E. Gonzales, Mehdi Bagerhi Hamaneh, Edward D. Harder, Ryan L. Hayes, Jing Huang, Yandong Huang, Phillip S. Hudson, Wonpil Im, Shahidul M. Islam, Wei Jiang, Michael R. Jones, Silvan Käser, Fiona L. Kearns, Nathan R. Kern, Jeffery B. Klauda, Themis Lazaridis, Jinhyuk Lee, Justin A. Lemkul, Xiaorong Liu, Yun Luo, Alexander D. MacKerell, Dan T. Major, Markus Meuwly, Kwangho Nam, Lennart Nilsson, Victor Ovchinnikov, Emanuele Paci, Soohyung Park, Richard W. Pastor, Amanda R. Pittman, Carol Beth Post, Samarjeet Prasad, Jingzhi Pu, Yifei Qi, Thenmalarchelvi Rathinavelan, Daniel R. Roe, Benoit Roux, Christopher N. Rowley, Jana Shen, Andrew C. Simmonett, Alexander J. Sodt, Kai Töpfer, Meenu Upadhyay, Arjan van der Vaart, Luis Itza Vazquez-Salazar, Richard M. Venable, Luke C. Warrensford, H. Lee Woodcock, Yujin Wu, Charles L. Brooks, Bernard R. Brooks, Martin Karplus

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Since its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published. They include the following: new faster simulation engines, accessible user interfaces for convenient workflows, and a vast array of simulation and analysis methods that encompass quantum mechanical, atomistic, and coarse-grained levels, as well as extensive coverage of force fields. In addition to providing the current snapshot of the CHARMM development, this review may serve as a starting point for exploring relevant theories and computational methods for tackling contemporary and emerging problems in biomolecular systems. CHARMM is freely available for academic and nonprofit research at https://academiccharmm.org/program.

Original languageEnglish
JournalJournal of Physical Chemistry B
Early online date20 Sep 2024
DOIs
StatePublished - 17 Oct 2024

Bibliographical note

Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.

Fingerprint

Dive into the research topics of 'CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed'. Together they form a unique fingerprint.

Cite this