TY - JOUR
T1 - Characterization of voltage-gated Ca2+ conductances in layer 5 neocortical pyramidal neurons from rats
AU - Almog, Mara
AU - Korngreen, Alon
PY - 2009/4/1
Y1 - 2009/4/1
N2 - Neuronal voltage-gated Ca2+ channels are involved in electrical signalling and in converting these signals into cytoplasmic calcium changes. One important function of voltage-gated Ca2+ channels is generating regenerative dendritic Ca2+ spikes. However, the Ca2+ dependent mechanisms used to create these spikes are only partially understood. To start investigating this mechanism, we set out to kinetically and pharmacologically identify the sub-types of somatic voltage-gated Ca2+ channels in pyramidal neurons from layer 5 of rat somatosensory cortex, using the nucleated configuration of the patch-clamp technique. The activation kinetics of the total Ba2+ current revealed conductance activation only at medium and high voltages suggesting that T-type calcium channels were not present in the patches. Steady-state inactivation protocols in combination with pharmacology revealed the expression of R-type channels. Furthermore, pharmacological experiments identified 5 voltage-gated Ca2+ channel sub-types - L-, N-, R- and P/Q-type. Finally, the activation of the Ca2+ conductances was examined using physiologically derived voltage-clamp protocols including a calcium spike protocol and a mock back-propagating action potential (mBPAP) protocol. These experiments enable us to suggest the possible contribution of the five Ca2+ channel sub-types to Ca2+ current flow during activation under physiological conditions.
AB - Neuronal voltage-gated Ca2+ channels are involved in electrical signalling and in converting these signals into cytoplasmic calcium changes. One important function of voltage-gated Ca2+ channels is generating regenerative dendritic Ca2+ spikes. However, the Ca2+ dependent mechanisms used to create these spikes are only partially understood. To start investigating this mechanism, we set out to kinetically and pharmacologically identify the sub-types of somatic voltage-gated Ca2+ channels in pyramidal neurons from layer 5 of rat somatosensory cortex, using the nucleated configuration of the patch-clamp technique. The activation kinetics of the total Ba2+ current revealed conductance activation only at medium and high voltages suggesting that T-type calcium channels were not present in the patches. Steady-state inactivation protocols in combination with pharmacology revealed the expression of R-type channels. Furthermore, pharmacological experiments identified 5 voltage-gated Ca2+ channel sub-types - L-, N-, R- and P/Q-type. Finally, the activation of the Ca2+ conductances was examined using physiologically derived voltage-clamp protocols including a calcium spike protocol and a mock back-propagating action potential (mBPAP) protocol. These experiments enable us to suggest the possible contribution of the five Ca2+ channel sub-types to Ca2+ current flow during activation under physiological conditions.
UR - http://www.scopus.com/inward/record.url?scp=64149104657&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0004841
DO - 10.1371/journal.pone.0004841
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 19337371
AN - SCOPUS:64149104657
SN - 1932-6203
VL - 4
JO - PLoS ONE
JF - PLoS ONE
IS - 4
M1 - e4841
ER -