Characterization of the interfacial layer formed during pulsed laser deposition of oxides on Si

V. Craciun, J. M. Howard, N. D. Bassim, R. K. Singh

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Medium-k dielectric Y2O3 films were directly grown on (100) Si substrates by the pulsed laser deposition (PLD) technique. X-ray photoelectron spectroscopy, variable angle spectroscopic ellipsometry, current-voltage, capacitance-voltage, and high-resolution transmission electron microscopy were used to investigate the composition, thickness, and electrical properties of the grown structures. It has been found that at the interface between the Si substrate and the grown dielectric layer, a SiOx interfacial layer, whose thickness depended on the oxygen pressure used during the PLD growth, was always formed. The main oxygen source for this interfacial layer formation is the physisorbed oxygen trapped inside the grown layer during the laser ablation-deposition process. When trying to reduce the thickness of this low-k interfacial layer by decreasing the oxygen pressure during laser ablation, a marked degradation of the electrical properties of the structures was noticed.

Original languageEnglish
Pages (from-to)F1141-F1146
JournalMaterials Research Society Symposium - Proceedings
Volume666
DOIs
StatePublished - 2001
Externally publishedYes

Keywords

  • Laser ablation
  • Medium-k dielectrics
  • Thin films
  • Yttria

Fingerprint

Dive into the research topics of 'Characterization of the interfacial layer formed during pulsed laser deposition of oxides on Si'. Together they form a unique fingerprint.

Cite this