TY - JOUR
T1 - Characterization of Systemic and Culprit-Coronary Artery miR-483-5p Expression in Chronic CAD and Acute Myocardial Infarction Male Patients
AU - Volodko, Olga
AU - Volinsky, Natalia
AU - Yarkoni, Merav
AU - Margalit, Nufar
AU - Kusniec, Fabio
AU - Sudarsky, Doron
AU - Elbaz-Greener, Gabby
AU - Carasso, Shemy
AU - Amir, Offer
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/5
Y1 - 2023/5
N2 - Coronary artery disease (CAD) is the leading cause of mortality worldwide. In chronic and myocardial infarction (MI) states, aberrant levels of circulating microRNAs compromise gene expression and pathophysiology. We aimed to compare microRNA expression in chronic-CAD and acute-MI male patients in peripheral blood vasculature versus coronary arteries proximal to a culprit area. Blood from chronic-CAD, acute-MI with/out ST segment elevation (STEMI/NSTEMI, respectively), and control patients lacking previous CAD or having patent coronary arteries was collected during coronary catheterization from peripheral arteries and from proximal culprit coronary arteries aimed for the interventions. Random coronary arterial blood was collected from controls; RNA extraction, miRNA library preparation and Next Generation Sequencing followed. High concentrations of microRNA-483-5p (miR-483-5p) were noted as ‘coronary arterial gradient’ in culprit acute-MI versus chronic-CAD (p = 0.035) which were similar to controls versus chronic-CAD (p < 0.001). Meanwhile, peripheral miR-483-5p was downregulated in acute-MI and chronic-CAD, compared with controls (1.1 ± 2.2 vs. 2.6 ± 3.3, respectively, p < 0.005). A receiver operating characteristic curve analysis for miR483-5p association with chronic CAD demonstrated an area under the curve of 0.722 (p < 0.001) with 79% sensitivity and 70% specificity. Using in silico gene analysis, we detected miR-483-5p cardiac gene targets, responsible for inflammation (PLA2G5), oxidative stress (NUDT8, GRK2), apoptosis (DNAAF10), fibrosis (IQSEC2, ZMYM6, MYOM2), angiogenesis (HGSNAT, TIMP2) and wound healing (ADAMTS2). High miR-483-5p ‘coronary arterial gradient’ in acute-MI, unnoticed in chronic-CAD, suggests important local mechanisms for miR483-5p in CAD in response to local myocardial ischemia. MiR-483-5p may have an important role as a gene modulator for pathologic and tissue repair states, is a suggestive biomarker, and is a potential therapeutic target for acute and chronic cardiovascular disease.
AB - Coronary artery disease (CAD) is the leading cause of mortality worldwide. In chronic and myocardial infarction (MI) states, aberrant levels of circulating microRNAs compromise gene expression and pathophysiology. We aimed to compare microRNA expression in chronic-CAD and acute-MI male patients in peripheral blood vasculature versus coronary arteries proximal to a culprit area. Blood from chronic-CAD, acute-MI with/out ST segment elevation (STEMI/NSTEMI, respectively), and control patients lacking previous CAD or having patent coronary arteries was collected during coronary catheterization from peripheral arteries and from proximal culprit coronary arteries aimed for the interventions. Random coronary arterial blood was collected from controls; RNA extraction, miRNA library preparation and Next Generation Sequencing followed. High concentrations of microRNA-483-5p (miR-483-5p) were noted as ‘coronary arterial gradient’ in culprit acute-MI versus chronic-CAD (p = 0.035) which were similar to controls versus chronic-CAD (p < 0.001). Meanwhile, peripheral miR-483-5p was downregulated in acute-MI and chronic-CAD, compared with controls (1.1 ± 2.2 vs. 2.6 ± 3.3, respectively, p < 0.005). A receiver operating characteristic curve analysis for miR483-5p association with chronic CAD demonstrated an area under the curve of 0.722 (p < 0.001) with 79% sensitivity and 70% specificity. Using in silico gene analysis, we detected miR-483-5p cardiac gene targets, responsible for inflammation (PLA2G5), oxidative stress (NUDT8, GRK2), apoptosis (DNAAF10), fibrosis (IQSEC2, ZMYM6, MYOM2), angiogenesis (HGSNAT, TIMP2) and wound healing (ADAMTS2). High miR-483-5p ‘coronary arterial gradient’ in acute-MI, unnoticed in chronic-CAD, suggests important local mechanisms for miR483-5p in CAD in response to local myocardial ischemia. MiR-483-5p may have an important role as a gene modulator for pathologic and tissue repair states, is a suggestive biomarker, and is a potential therapeutic target for acute and chronic cardiovascular disease.
KW - coronary artery disease
KW - culprit artery
KW - miR-483-5p
KW - myocardial infarction
KW - next generation sequencing
UR - http://www.scopus.com/inward/record.url?scp=85160375556&partnerID=8YFLogxK
U2 - 10.3390/ijms24108551
DO - 10.3390/ijms24108551
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 37239897
AN - SCOPUS:85160375556
SN - 1661-6596
VL - 24
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 10
M1 - 8551
ER -