TY - JOUR
T1 - Characterization of complexes of nucleoside-5′-phosphorothioate analogues with zinc ions
AU - Sayer, Alon Haim
AU - Itzhakov, Yehudit
AU - Stern, Noa
AU - Nadel, Yael
AU - Fischer, Bilha
PY - 2013/10/7
Y1 - 2013/10/7
N2 - On the basis of the high affinity of Zn2+ to sulfur and imidazole, we targeted nucleotides such as GDP-β-S, ADP-β-S, and AP3(β-S)A, as potential biocompatible Zn2+-chelators. The thiophosphate moiety enhanced the stability of the Zn2+- nucleotide complex by about 0.7 log units. ATP-α,β-CH 2-γ-S formed the most stable Zn2+-complex studied here, log K 6.50, being ∼0.8 and ∼1.1 log units more stable than ATP-γ-S-Zn2+ and ATP-Zn2+ complexes, and was the major species, 84%, under physiological pH. Guanine nucleotides Zn2+ complexes were more stable by 0.3-0.4 log units than the corresponding adenine nucleotide complexes. Likewise, AP3(β-S)A-zinc complex was ∼0.5 log units more stable than AP3A complex. 1H- and 31P NMR monitored Zn2+ titration showed that Zn 2+ coordinates with the purine nucleotide N7-nitrogen atom, the terminal phosphate, and the adjacent phosphate. In conclusion, replacement of a terminal phosphate by a thiophosphate group resulted in decrease of the acidity of the phosphate moiety by approximately one log unit, and increase of stability of Zn2+-complexes of the latter analogues by up to 0.7 log units. A terminal phosphorothioate contributed more to the stability of nucleotide-Zn2+ complexes than a bridging phosphorothioate.
AB - On the basis of the high affinity of Zn2+ to sulfur and imidazole, we targeted nucleotides such as GDP-β-S, ADP-β-S, and AP3(β-S)A, as potential biocompatible Zn2+-chelators. The thiophosphate moiety enhanced the stability of the Zn2+- nucleotide complex by about 0.7 log units. ATP-α,β-CH 2-γ-S formed the most stable Zn2+-complex studied here, log K 6.50, being ∼0.8 and ∼1.1 log units more stable than ATP-γ-S-Zn2+ and ATP-Zn2+ complexes, and was the major species, 84%, under physiological pH. Guanine nucleotides Zn2+ complexes were more stable by 0.3-0.4 log units than the corresponding adenine nucleotide complexes. Likewise, AP3(β-S)A-zinc complex was ∼0.5 log units more stable than AP3A complex. 1H- and 31P NMR monitored Zn2+ titration showed that Zn 2+ coordinates with the purine nucleotide N7-nitrogen atom, the terminal phosphate, and the adjacent phosphate. In conclusion, replacement of a terminal phosphate by a thiophosphate group resulted in decrease of the acidity of the phosphate moiety by approximately one log unit, and increase of stability of Zn2+-complexes of the latter analogues by up to 0.7 log units. A terminal phosphorothioate contributed more to the stability of nucleotide-Zn2+ complexes than a bridging phosphorothioate.
UR - http://www.scopus.com/inward/record.url?scp=84885131891&partnerID=8YFLogxK
U2 - 10.1021/ic400878k
DO - 10.1021/ic400878k
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 24050595
AN - SCOPUS:84885131891
SN - 0020-1669
VL - 52
SP - 10886
EP - 10896
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 19
ER -