Central Invariants of H-module algebras

Miriam Cohen, Sara Westreich

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Let H be a Hopf algebra over a field k, and A an H-module algebra, with subalgebra of H-invariants denoted by AH. When (H, R) is quasitriangular and A is quantum commutative with respect to (H, R), (e.g. quantum planes, graded commutative superalgebras), then [formula ommitted] center of A =Z(A). In this paper we are mainly concerned with actions of H for which AH⊂ Z(A). We show that under this hypothesis there exists strong relations between the ideal structures of AH, A and A#H. We demonstrate the theorems by constructing an example of a quantum commutative A, so that A/AHis H*-Galois. This is done by giving (C G)*, G = Zn X Zn,a nontrivial quasitriangular structure and defining an action of it on a localization of the quantum plane.

Original languageEnglish
Pages (from-to)2859-2883
Number of pages25
JournalCommunications in Algebra
Issue number8
StatePublished - 1 Jan 1993
Externally publishedYes


Dive into the research topics of 'Central Invariants of H-module algebras'. Together they form a unique fingerprint.

Cite this