TY - JOUR
T1 - Carbon Dots for Heavy-Metal Sensing, pH-Sensitive Cargo Delivery, and Antibacterial Applications
AU - Das, Poushali
AU - Maruthapandi, Moorthy
AU - Saravanan, Arumugam
AU - Natan, Michal
AU - Jacobi, Gila
AU - Banin, Ehud
AU - Gedanken, Aharon
N1 - Publisher Copyright:
© 2020 American Chemical Society. All rights reserved.
PY - 2020/12/24
Y1 - 2020/12/24
N2 - Currently, the technologies accompanying the usage of waste materials for the fabrication of innovative useful materials have been significantly advanced. For the same purpose, a possible sustainable approach was demonstrated for the utilization of jute caddies, known as jute industry waste. From the industrial waste, carbon dots (CDs) were sonochemically prepared, followed by their surface modification with benzalkonium chloride (BZC) to yield waste jute-derived fluorescent surface-quaternized CDs (JB-CDs), which exhibit excellent water solubility, excitation-dependent emission, and good photostability, and were utilized as a fluorescent nanoswitch to detect inorganic pollutants, such as chromium (VI) [Cr(VI)] ions, in aqueous solutions. JB-CDs can detect Cr(VI) concentrations as low as 0.03 μM through luminescence quenching ("turn-off") and further recover their fluorescence ("turn-on") selectively for sensing ascorbic acid (AA), compared with other metal ions and biomolecules tested. The present technique has the advantages of fast response time and high selectivity and sensitivity in practical applications. JB-CDs were tested against a Gram-negative bacterium, Escherichia coli, and a Gram-positive bacterium, Staphylococcus aureus, to confirm their bactericidal activity. The results indicated that JB-CDs substantially inhibited the growth of the tested bacteria. Besides this, JB-CDs played the role of a nanovehicle to exemplify the release study of a model drug ciprofloxacin. It was observed that the surface-quaternized JB-CDs showed a pH-responsive release behavior, where the release behavior was found to be better controlled at pH 7.4 than at pH 5.2 and 6.8. The synthesis of such a fluorescent nanobutton, stimuli-responsive drug release, and antibacterial nanomaterial using a sustainable material such as jute industrial waste can pave the path for a smart multifunctional material.
AB - Currently, the technologies accompanying the usage of waste materials for the fabrication of innovative useful materials have been significantly advanced. For the same purpose, a possible sustainable approach was demonstrated for the utilization of jute caddies, known as jute industry waste. From the industrial waste, carbon dots (CDs) were sonochemically prepared, followed by their surface modification with benzalkonium chloride (BZC) to yield waste jute-derived fluorescent surface-quaternized CDs (JB-CDs), which exhibit excellent water solubility, excitation-dependent emission, and good photostability, and were utilized as a fluorescent nanoswitch to detect inorganic pollutants, such as chromium (VI) [Cr(VI)] ions, in aqueous solutions. JB-CDs can detect Cr(VI) concentrations as low as 0.03 μM through luminescence quenching ("turn-off") and further recover their fluorescence ("turn-on") selectively for sensing ascorbic acid (AA), compared with other metal ions and biomolecules tested. The present technique has the advantages of fast response time and high selectivity and sensitivity in practical applications. JB-CDs were tested against a Gram-negative bacterium, Escherichia coli, and a Gram-positive bacterium, Staphylococcus aureus, to confirm their bactericidal activity. The results indicated that JB-CDs substantially inhibited the growth of the tested bacteria. Besides this, JB-CDs played the role of a nanovehicle to exemplify the release study of a model drug ciprofloxacin. It was observed that the surface-quaternized JB-CDs showed a pH-responsive release behavior, where the release behavior was found to be better controlled at pH 7.4 than at pH 5.2 and 6.8. The synthesis of such a fluorescent nanobutton, stimuli-responsive drug release, and antibacterial nanomaterial using a sustainable material such as jute industrial waste can pave the path for a smart multifunctional material.
KW - antibacterial activity
KW - carbon dots
KW - drug delivery
KW - fluorescence
KW - sensing
UR - http://www.scopus.com/inward/record.url?scp=85097865132&partnerID=8YFLogxK
U2 - 10.1021/acsanm.0c02305
DO - 10.1021/acsanm.0c02305
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85097865132
SN - 2574-0970
VL - 3
SP - 11777
EP - 11790
JO - ACS Applied Nano Materials
JF - ACS Applied Nano Materials
IS - 12
ER -