Bounded-concurrent secure two-party computation without setup assumptions

Research output: Contribution to journalConference articlepeer-review

69 Scopus citations

Abstract

In this paper we study the feasibility of obtaining protocols for general two-party computation that remain secure under concurrent composition. (A general protocol can be used for obtaining secure computation of any functionality.) We consider a scenario where no trusted setup is assumed (and so, for example, there is no common reference string available to the parties); we call this the "plain model". We present both negative and positive results for this model. Specifically, we show that a general two-party protocol that remains secure for m concurrent executions and can be proven via black-box simulation, must have more than m rounds of communication. An important corollary of this result is that there do not exist protocols for black-box secure general two-party computation for the case of unbounded concurrency (where any polynomial number of concurrent executions may be run). On the positive side, we show that under general cryptographic assumptions, there exist secure protocols for general two-party computation in the model of bounded concurrent composition (in this model the number of concurrent executions is fixed and the protocol design may depend on this number). Our protocol has O(m) rounds of communication, where m is the bound on the number of concurrent executions, and uses both black-box and non black-box techniques. We note that this protocol constitutes the first feasibility result for general two-party computation without setup assumptions for any model of concurrency.

Original languageEnglish
Pages (from-to)683-692
Number of pages10
JournalConference Proceedings of the Annual ACM Symposium on Theory of Computing
DOIs
StatePublished - 2003
Externally publishedYes
Event35th Annual ACM Symposium on Theory of Computing - San Diego, CA, United States
Duration: 9 Jun 200311 Jun 2003

Keywords

  • Theory

Fingerprint

Dive into the research topics of 'Bounded-concurrent secure two-party computation without setup assumptions'. Together they form a unique fingerprint.

Cite this