Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors

Talia Sirkis, Yevgeny Beiderman, Sergey Agdarov, Yafim Beiderman, Zeev Zalevsky

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in continuous monitoring of blood pressure and pulse wave velocity. In this paper, we introduce two techniques for non-contact sensing of vital bio signs. In the first approach the optical sensor is based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual. In the second concept we show a remote noncontact blood pulse wave velocity and pressure measurement based on tracking the temporal changes of reflected secondary speckle patterns produced in human skin when illuminated by a laser beams. In both concept experimental validation of the proposed schemes is shown and analyzed.

Original languageEnglish
Title of host publicationNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV
EditorsDan V. Nicolau, Dror Fixler, Alexander N. Cartwright
PublisherSPIE
ISBN (Electronic)9781510605954
DOIs
StatePublished - 2017
EventNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV 2017 - San Francisco, United States
Duration: 30 Jan 20171 Feb 2017

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10077
ISSN (Print)1605-7422

Conference

ConferenceNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIV 2017
Country/TerritoryUnited States
CitySan Francisco
Period30/01/171/02/17

Bibliographical note

Publisher Copyright:
© 2017 SPIE.

Keywords

  • Blood pulse pressure
  • Blood pulse wave velocity
  • Integrated fiber sensor
  • Speckle patterns

Fingerprint

Dive into the research topics of 'Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors'. Together they form a unique fingerprint.

Cite this