Biological Networks Regulating Cell Fate Choice Are Minimally Frustrated

Shubham Tripathi, David A. Kessler, Herbert Levine

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Characterization of the differences between biological and random networks can reveal the design principles that enable the robust realization of crucial biological functions including the establishment of different cell types. Previous studies, focusing on identifying topological features that are present in biological networks but not in random networks, have, however, provided few functional insights. We use a Boolean modeling framework and ideas from the spin glass literature to identify functional differences between five real biological networks and random networks with similar topological features. We show that minimal frustration is a fundamental property that allows biological networks to robustly establish cell types and regulate cell fate choice, and that this property can emerge in complex networks via Darwinian evolution. The study also provides clues regarding how the regulation of cell fate choice can go awry in a disease like cancer and lead to the emergence of aberrant cell types.

Original languageEnglish
Article number088101
Pages (from-to)088101
JournalPhysical Review Letters
Volume125
Issue number8
DOIs
StatePublished - 21 Aug 2020

Bibliographical note

Funding Information:
This work was supported by the National Science Foundation Grants No. PHY-1427654 and No. PHY-1935762. D. A. K. acknowledges support from the U.S.-Israel Binational Science Foundation Grant No. 2015/619.

Publisher Copyright:
© 2020 American Physical Society.

Fingerprint

Dive into the research topics of 'Biological Networks Regulating Cell Fate Choice Are Minimally Frustrated'. Together they form a unique fingerprint.

Cite this