Abstract
Objective: To evaluate the biological efficacy of TBATP and their distribution in the inner ear after transtympanic injection. Methods: TBATP was synthesized through standard Fmoc solid phase synthesis. A model of TNF-α-induced apoptosis was established in human umbilical vein endothelial cells (HUVECs). The peptides were covalently attached onto CAN-γ-Fe2 O3 NPs. Nanoparticle suspension was injected to rat middle ear cavity. Distribution of CAN-γ-Fe2 O3 NPs in the inner ear was detected using a 7.0 T MRI machine in combination with Prussian blue staining. Results: TBATP almost fully suppressed the inhibitory effect on HUVECs induced by TNF-α while the linear one reduced less than
half of the effect. CAN-γ-Fe2
O3
NPs conjugated to TBATP at a peptide weight ratio of 10% but not 50% efficiently entered the inner ear
at 3 h through 2 w post-middle ear administrations and most pronounced at 2 w. Conclusion: The tetra-branched anti-TNF-α peptide (TBATP) is capable of suppressing the inhibitory effect on HUVECs induced by
TNF-α, and is visualized by MRI after conjugating to super-paramagnetic Ce3/4+ cation-doped maghemite nanoparticles arising from
ceric ammonium nitrate-mediated doping oxidation of starting magnetite nanoparticles (CAN-γ-Fe2
O3
NPs). Keywords: Peptide; Functional maghemite nanoparticles; Inner ear; Magnetic resonance imaging; Biological barrier. List of Abbreviations: CAN-γ-Fe2
O3
NPs: Super-paramagnetic maghemite (γ-Fe2
O3
) nanoparticles using ceric ammonium nitrate
(CAN)-mediated oxidation of starting magnetite (Fe3
O4
) nanoparticles; HUVECs: Human umbilical vein endothelial cells; TNF-α:
tumor necrosis factor-α.
Original language | American English |
---|---|
Number of pages | 9 |
Journal | Journal of Materials Science and Nanotechnology, |
Volume | 5 |
Issue number | 22 |
State | Published - 2017 |
Keywords
- Peptide
- functional maghemite nanoparticles
- Inner ear
- Magnetic resonance imaging
- biological barrier