TY - JOUR
T1 - Biodegradable Schiff bases
T2 - a novel approach for the management of pathogenic fungi (Sclerotium rolfsii and Rhizoctonia bataticola) and stored grain insect (Callosobruchus maculatus) in green gram (Vigna radiata)
AU - Mondal, Tilak
AU - Kumar, Rajesh
AU - Bettanayaka, Jeevan
AU - Gogoi, Robin
AU - Koti, Prasanna
AU - Ray, Mrinmoy
AU - Kole, Ramen Kumar
AU - Mukherjee, Santanu
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
PY - 2024/8
Y1 - 2024/8
N2 - Twenty-two eco-friendly, novel Schiff bases were synthesized from 2,4,5-trichloro aniline and characterized by using FT-IR, 1H NMR, and 13C NMR techniques. Fungicidal activity against pathogenic fungi Sclerotium rolfsii and Rhizoctonia bataticola and insecticidal activity against the stored grain insect pest Callosobruchus maculatus of the test compounds were evaluated under control condition. All of the investigated compounds, according to the study, exhibited moderate to good antifungal and insecticidal activities. The best antifungal activity against both pathogenic fungi was demonstrated by C15 and C16 whose ED50 values were recorded 11.4 and 10.4 μg/mL against R. bataticola and 10.6 and 11.9 μg/mL against S. rolfsii, respectively. They were further screened in for disease suppression against both pathogenic fungi under pot condition through different methods of applications in green gram (Vigna radiata L.) crop. The compounds C10 and C18 had the highest insecticidal activity, with LD50 values of 0.024 and 0.042 percentages, respectively. Stepwise regression analysis using root mean square error (RMSE) and correlation coefficient (R) method used to validate the quantitative structure activity relationship (QSAR) of synthesized compounds in addition to their fungicidal and insecticidal actions. To the best of our knowledge, this investigation on the 22 new Schiff bases as possible agrochemicals is the first one that has been fully reported.
AB - Twenty-two eco-friendly, novel Schiff bases were synthesized from 2,4,5-trichloro aniline and characterized by using FT-IR, 1H NMR, and 13C NMR techniques. Fungicidal activity against pathogenic fungi Sclerotium rolfsii and Rhizoctonia bataticola and insecticidal activity against the stored grain insect pest Callosobruchus maculatus of the test compounds were evaluated under control condition. All of the investigated compounds, according to the study, exhibited moderate to good antifungal and insecticidal activities. The best antifungal activity against both pathogenic fungi was demonstrated by C15 and C16 whose ED50 values were recorded 11.4 and 10.4 μg/mL against R. bataticola and 10.6 and 11.9 μg/mL against S. rolfsii, respectively. They were further screened in for disease suppression against both pathogenic fungi under pot condition through different methods of applications in green gram (Vigna radiata L.) crop. The compounds C10 and C18 had the highest insecticidal activity, with LD50 values of 0.024 and 0.042 percentages, respectively. Stepwise regression analysis using root mean square error (RMSE) and correlation coefficient (R) method used to validate the quantitative structure activity relationship (QSAR) of synthesized compounds in addition to their fungicidal and insecticidal actions. To the best of our knowledge, this investigation on the 22 new Schiff bases as possible agrochemicals is the first one that has been fully reported.
KW - Pathogenic fungi
KW - Pesticide
KW - Quantitative structure activity relationship
KW - Schiff base
KW - Stepwise regression analysis
KW - Store grain pest
UR - http://www.scopus.com/inward/record.url?scp=85201396847&partnerID=8YFLogxK
U2 - 10.1007/s11356-024-34713-9
DO - 10.1007/s11356-024-34713-9
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 39153063
AN - SCOPUS:85201396847
SN - 0944-1344
VL - 31
SP - 52540
EP - 52561
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 39
ER -