Abstract
When two sine waves that differ slightly in orientation are presented to the two eyes separately, a single cyclopean sine wave is perceived. However, it is unclear how the brain calculates its orientation. Here, we used a signal detection rating method to estimate the perceived orientation when the two eyes were presented with Gabor patches that differed in both orientation and contrast. We found a nearly linear combination of orientation when both targets had the same contrast. However, the binocular percept shifted away from the linear prediction towards the orientation with the higher contrast, depending on both the base contrast and the contrast ratio. We found that stimuli that differ slightly in orientation are combined into a single percept, similarly for monocular and binocular presentation, with a bias that depends on the interocular contrast ratio. Our results are well fitted by gaincontrol models, and are consistent with a previous study that favoured the DSKL model that successfully predicts binocular phase and contrast combination and binocular contrast discrimination. In this model, the departures from linearity may be explained on the basis of mutual suppression and mutual enhancement, both of which are stronger under dichoptic than monocular conditions.
Original language | English |
---|---|
Article number | 160534 |
Journal | Royal Society Open Science |
Volume | 3 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2016 |
Bibliographical note
Publisher Copyright:© 2016 The Authors.
Funding
This work was supported by grants RO1EY020976 from the NEI (D.M.L.).
Funders | Funder number |
---|---|
National Eye Institute |
Keywords
- Binocular combination
- Contrast
- DSKL model
- Interocular enhancement
- Interocular suppression
- Orientation