TY - JOUR
T1 - Binaural LCMV Beamforming with Partial Noise Estimation
AU - Gösling, Nico
AU - Hadad, Elior
AU - Gannot, Sharon
AU - Doclo, Simon
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2020
Y1 - 2020
N2 - Besides reducing undesired sources, i.e., interfering sources and background noise, another important objective of a binaural beamforming algorithm is to preserve the spatial impression of the acoustic scene, which can be achieved by preserving the binaural cues of all sound sources. While the binaural minimum variance distortionless response (BMVDR) beamformer provides a good noise reduction performance and preserves the binaural cues of the desired source, it does not allow to control the reduction of the interfering sources and distorts the binaural cues of the interfering sources and the background noise. Hence, several extensions have been proposed. First, the binaural linearly constrained minimum variance (BLCMV) beamformer uses additional constraints, enabling to control the reduction of the interfering sources while preserving their binaural cues. Second, the BMVDR with partial noise estimation (BMVDR-N) mixes the output signals of the BMVDR with the noisy reference microphone signals, enabling to control the binaural cues of the background noise. Aiming at merging the advantages of both extensions, in this paper we propose the BLCMV with partial noise estimation (BLCMV-N). We show that the output signals of the BLCMV-N can be interpreted as a mixture between the noisy reference microphone signals and the output signals of a BLCMV using an adjusted interference scaling parameter. We provide a theoretical comparison between the BMVDR, the BLCMV, the BMVDR-N and the proposed BLCMV-N in terms of noise and interference reduction performance and binaural cue preservation. Experimental results using recorded signals as well as the results of a perceptual listening test show that the BLCMV-N is able to preserve the binaural cues of an interfering source (like the BLCMV), while enabling to trade off between noise reduction performance and binaural cue preservation of the background noise (like the BMVDR-N).
AB - Besides reducing undesired sources, i.e., interfering sources and background noise, another important objective of a binaural beamforming algorithm is to preserve the spatial impression of the acoustic scene, which can be achieved by preserving the binaural cues of all sound sources. While the binaural minimum variance distortionless response (BMVDR) beamformer provides a good noise reduction performance and preserves the binaural cues of the desired source, it does not allow to control the reduction of the interfering sources and distorts the binaural cues of the interfering sources and the background noise. Hence, several extensions have been proposed. First, the binaural linearly constrained minimum variance (BLCMV) beamformer uses additional constraints, enabling to control the reduction of the interfering sources while preserving their binaural cues. Second, the BMVDR with partial noise estimation (BMVDR-N) mixes the output signals of the BMVDR with the noisy reference microphone signals, enabling to control the binaural cues of the background noise. Aiming at merging the advantages of both extensions, in this paper we propose the BLCMV with partial noise estimation (BLCMV-N). We show that the output signals of the BLCMV-N can be interpreted as a mixture between the noisy reference microphone signals and the output signals of a BLCMV using an adjusted interference scaling parameter. We provide a theoretical comparison between the BMVDR, the BLCMV, the BMVDR-N and the proposed BLCMV-N in terms of noise and interference reduction performance and binaural cue preservation. Experimental results using recorded signals as well as the results of a perceptual listening test show that the BLCMV-N is able to preserve the binaural cues of an interfering source (like the BLCMV), while enabling to trade off between noise reduction performance and binaural cue preservation of the background noise (like the BMVDR-N).
KW - Binaural cues
KW - LCMV beamformer
KW - MVDR beamformer
KW - binaural noise reduction
KW - hearing devices
UR - http://www.scopus.com/inward/record.url?scp=85096360080&partnerID=8YFLogxK
U2 - 10.1109/TASLP.2020.3034526
DO - 10.1109/TASLP.2020.3034526
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85096360080
SN - 2329-9290
VL - 28
SP - 2942
EP - 2955
JO - IEEE/ACM Transactions on Audio Speech and Language Processing
JF - IEEE/ACM Transactions on Audio Speech and Language Processing
M1 - 9244114
ER -