Automatic Detection of Fake Key Attacks in Secure Messaging

Tarun Kumar Yadav, Devashish Gosain, Amir Herzberg, Daniel Zappala, Kent Seamons

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Popular instant messaging applications such as WhatsApp and Signal provide end-to-end encryption for billions of users. These applications often rely on a centralized, application-specific server to distribute public keys and relay encrypted messages between the users. As a result, they prevent passive attacks but are vulnerable to some active attacks. A malicious or hacked server can distribute fake keys to users to perform man-in-the-middle or impersonation attacks. While typical secure messaging applications provide a manual method for users to detect these attacks, this burdens users, and studies show it is ineffective in practice. This paper presents KTACA, a completely automated approach for key verification that is oblivious to users and easy to deploy. We motivate KTACA by designing two approaches to automatic key verification. One approach uses client auditing (KTCA) and the second uses anonymous key monitoring (AKM). Both have relatively inferior security properties, leading to KTACA, which combines these approaches to provide the best of both worlds. We provide a security analysis of each defense, identifying which attacks they can automatically detect. We implement the active attacks to demonstrate they are possible, and we also create a prototype implementation of all the defenses to measure their performance and confirm their feasibility. Finally, we discuss the strengths and weaknesses of each defense, the load they impose on clients and service providers, and their deployment considerations.

Original languageEnglish
Title of host publicationCCS 2022 - Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
PublisherAssociation for Computing Machinery
Pages3019-3032
Number of pages14
ISBN (Electronic)9781450394505
DOIs
StatePublished - 7 Nov 2022
Externally publishedYes
Event28th ACM SIGSAC Conference on Computer and Communications Security, CCS 2022 - Los Angeles, United States
Duration: 7 Nov 202211 Nov 2022

Publication series

NameProceedings of the ACM Conference on Computer and Communications Security
ISSN (Print)1543-7221

Conference

Conference28th ACM SIGSAC Conference on Computer and Communications Security, CCS 2022
Country/TerritoryUnited States
CityLos Angeles
Period7/11/2211/11/22

Bibliographical note

Publisher Copyright:
© 2022 ACM.

Keywords

  • authentication
  • mitm attacks
  • secure messaging
  • signal

Fingerprint

Dive into the research topics of 'Automatic Detection of Fake Key Attacks in Secure Messaging'. Together they form a unique fingerprint.

Cite this