Automated Verification of Social Laws in Numeric Settings

Ronen Nir, Alexander Shleyfman, Erez Karpas

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

It is possible for agents operating in a shared environment to interfere with one another. One mechanism of coordination is called Social Law. Enacting such a law in a multi-agent setting restricts agents’ behaviors. Robustness, in this case, ensures that the agents do not harmfully interfere with each other and that each agent achieves its goals regardless of what other agents do. Previous work on social law verification examined only the case of boolean state variables. However, many real-world problems require reasoning with numeric variables. Moreover, numeric fluents allow a more compact representation of multiple planning problems. In this paper, we develop a method to verify whether a given social law is robust via compilation to numeric planning. A solution to this compilation constitutes a counterexample to the robustness of the problem, i.e., evidence of cross-agent conflict. Thus, the social law is robust if and only if the proposed compilation is unsolvable. We empirically verify robustness in multiple domains using state-of-the-art numeric planners. Additionally, this compilation raises a challenge by generating a set of non-trivial numeric domains where unsolvability should be either proved or disproved.

Original languageEnglish
Title of host publicationAAAI-23 Technical Tracks 10
EditorsBrian Williams, Yiling Chen, Jennifer Neville
PublisherAAAI press
Pages12087-12094
Number of pages8
ISBN (Electronic)9781577358800
DOIs
StatePublished - 27 Jun 2023
Event37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States
Duration: 7 Feb 202314 Feb 2023

Publication series

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Volume37

Conference

Conference37th AAAI Conference on Artificial Intelligence, AAAI 2023
Country/TerritoryUnited States
CityWashington
Period7/02/2314/02/23

Bibliographical note

Publisher Copyright:
Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Funding

This work was partially supported by the Peter Monk Research Institute (PMRI). The work of Alexander Shleyfman was partially supported by the Israel Academy of Sciences and Humanities program for Israeli postdoctoral researchers.

FundersFunder number
Israel Academy of Sciences and Humanities program for Israeli
Peter Monk Research Institute

    Fingerprint

    Dive into the research topics of 'Automated Verification of Social Laws in Numeric Settings'. Together they form a unique fingerprint.

    Cite this