Abstract
Taxis (which include cars working with car aggregation systems such as Uber, Grab, Lyft etc.) have become a critical component in the urban transportation. While most research and applications in the context of taxis have focused on improving performance from a customer perspective, in this paper, we focus on improving performance from a taxi driver perspective. Higher revenues for taxi drivers can help bring more drivers into the system thereby improving availability for customers in dense urban cities. Typically, when there is no customer on board, taxi drivers will cruise around to find customers either directly (on the street) or indirectly (due to a request from a nearby customer on phone or on aggregation systems). For such cruising taxis, we develop a Reinforcement Learning (RL) based system to learn from real trajectory logs of drivers to advise them on the right locations to find customers which maximize their revenue. There are multiple translational challenges involved in building this RL system based on real data, such as annotating the activities (e.g., roaming, going to a taxi stand, etc.) observed in trajectory logs, identifying the right features for a state, action space and evaluating against real driver performance observed in the dataset. We also provide a dynamic abstraction mechanism to improve the basic learning mechanism. Finally, we provide a thorough evaluation on a real world data set from a developed Asian city and demonstrate that an RL based system can provide significant benefits to the drivers.
Original language | English |
---|---|
Title of host publication | Proceedings of the 27th International Conference on Automated Planning and Scheduling, ICAPS 2017 |
Editors | Laura Barbulescu, Jeremy D. Frank, Mausam, Stephen F. Smith |
Publisher | Association for the Advancement of Artificial Intelligence |
Pages | 409-417 |
Number of pages | 9 |
ISBN (Electronic) | 9781577357896 |
DOIs | |
State | Published - 2017 |
Event | 27th International Conference on Automated Planning and Scheduling, ICAPS 2017 - Pittsburgh, United States Duration: 18 Jun 2017 → 23 Jun 2017 |
Publication series
Name | Proceedings International Conference on Automated Planning and Scheduling, ICAPS |
---|---|
Volume | 0 |
ISSN (Print) | 2334-0835 |
ISSN (Electronic) | 2334-0843 |
Conference
Conference | 27th International Conference on Automated Planning and Scheduling, ICAPS 2017 |
---|---|
Country/Territory | United States |
City | Pittsburgh |
Period | 18/06/17 → 23/06/17 |
Bibliographical note
Publisher Copyright:Copyright © 2017, Association for the Advancement of Artificial Intelligence (www.aaai.org).