Asymptotic and non-asymptotic estimates for multivariate Laplace integrals

Maria Rosaria Formica, Eugeny Ostrovsky, Leonid Sirota

Research output: Contribution to journalArticlepeer-review

Abstract

We derive bilateral asymptotic as well as non-asymptotic estimates for the multivariate Laplace integrals. Furthermore, we provide multidimensional Tauberian theorems for exponential integrals.

Original languageEnglish
Pages (from-to)759-778
Number of pages20
JournalStatistics, Optimization and Information Computing
Volume7
Issue number4
DOIs
StatePublished - 2019

Bibliographical note

Publisher Copyright:
© 2019 International Academic Press.

Funding

The first author has been partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by Università degli Studi di Napoli Parthenope through the project “sostegno alla Ricerca individuale”.

FundersFunder number
GNAMPA
Istituto Nazionale di Alta Matematica "Francesco Severi"
Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni
Università degli Studi di Napoli Parthenope

    Keywords

    • Cramer's condition
    • Exponential and ordinary tail of distribution
    • Fenchel-Morau theorem
    • Laplace or exponential integrals
    • Lebesgue measure
    • Measurable space
    • Moment generating functions
    • Random variable and random vector
    • Regional and ordinary Young-Fenchel transform
    • Regular and slowly varying functions
    • Saddle-point method

    Fingerprint

    Dive into the research topics of 'Asymptotic and non-asymptotic estimates for multivariate Laplace integrals'. Together they form a unique fingerprint.

    Cite this