TY - JOUR
T1 - Assimilation of polysaccharides and glucose by major bacterial groups in the Delaware Estuary
AU - Elifantz, Hila
AU - Malmstrom, Rex R.
AU - Cottrell, Matthew T.
AU - Kirchman, David L.
PY - 2005/12
Y1 - 2005/12
N2 - The contribution of major bacterial groups to the assimilation of extracellular polymeric substances (EPS) and glucose in the Delaware Estuary was assessed using microautoradiography and fluorescence in situ hybridization. Bacterial groups contributed to EPS and glucose assimilation in part according to their distribution in the estuary. Abundance of the phylogenetic groups explained 35% and 55% of the variation in EPS and glucose assimilation, respectively. Actinobacteria contributed 70% to glucose assimilation in fresh-water, while Alphaproteobacteria assimilated 60% of this compound in saline water. In contrast, various bacterial groups dominated the assimilation of EPS. Actinobacteria and Betaproteobacteria contributed the most in the freshwater section, whereas Cytophaga-like bacteria and Alpha- and Gammaproteobacteria participated in EPS assimilation in the lower part of the estuary. In addition, we examined the fraction of bacteria in each group that assimilated glucose or EPS. Overall, the fraction of bacteria in all groups that assimilated glucose was higher than the fraction that assimilated EPS (15 to 30% versus 5 to 20%, respectively). We found no correlation between the relative abundance of a group in the estuary and the fraction of bacteria actively assimilating glucose or EPS; the more active groups were often less abundant. Our results imply that the bacterial community in the Delaware Estuary is not controlled solely by "bottom-up" factors such as dissolved organic matter.
AB - The contribution of major bacterial groups to the assimilation of extracellular polymeric substances (EPS) and glucose in the Delaware Estuary was assessed using microautoradiography and fluorescence in situ hybridization. Bacterial groups contributed to EPS and glucose assimilation in part according to their distribution in the estuary. Abundance of the phylogenetic groups explained 35% and 55% of the variation in EPS and glucose assimilation, respectively. Actinobacteria contributed 70% to glucose assimilation in fresh-water, while Alphaproteobacteria assimilated 60% of this compound in saline water. In contrast, various bacterial groups dominated the assimilation of EPS. Actinobacteria and Betaproteobacteria contributed the most in the freshwater section, whereas Cytophaga-like bacteria and Alpha- and Gammaproteobacteria participated in EPS assimilation in the lower part of the estuary. In addition, we examined the fraction of bacteria in each group that assimilated glucose or EPS. Overall, the fraction of bacteria in all groups that assimilated glucose was higher than the fraction that assimilated EPS (15 to 30% versus 5 to 20%, respectively). We found no correlation between the relative abundance of a group in the estuary and the fraction of bacteria actively assimilating glucose or EPS; the more active groups were often less abundant. Our results imply that the bacterial community in the Delaware Estuary is not controlled solely by "bottom-up" factors such as dissolved organic matter.
UR - http://www.scopus.com/inward/record.url?scp=29144440316&partnerID=8YFLogxK
U2 - 10.1128/AEM.71.12.7799-7805.2005
DO - 10.1128/AEM.71.12.7799-7805.2005
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 16332754
AN - SCOPUS:29144440316
SN - 0099-2240
VL - 71
SP - 7799
EP - 7805
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 12
ER -