Artificial Intelligence Assessment of Biological Age From Transthoracic Echocardiography: Discrepancies with Chronologic Age Predict Significant Excess Mortality

Kobi Faierstein, Michael Fiman, Ranel Loutati, Noa Rubin, Uri Manor, Adiel Am-Shalom, Michal Cohen-Shelly, Nimrod Blank, Dor Lotan, Qiong Zhao, Ehud Schwammenthal, Robert Klempfner, Eyal Zimlichman, Ehud Raanani, Elad Maor

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Background: Age and sex can be estimated using artificial intelligence on the basis of various sources. The aims of this study were to test whether convolutional neural networks could be trained to estimate age and predict sex using standard transthoracic echocardiography and to evaluate the prognostic implications. Methods: The algorithm was trained on 76,342 patients, validated in 22,825 patients, and tested in 20,960 patients. It was then externally validated using data from a different hospital (n = 556). Finally, a prospective cohort of handheld point-of-care ultrasound devices (n = 319; ClinicalTrials.gov identifier NCT05455541) was used to confirm the findings. A multivariate Cox regression model was used to investigate the association between age estimation and chronologic age with overall survival. Results: The mean absolute error in age estimation was 4.9 years, with a Pearson correlation coefficient of 0.922. The probabilistic value of sex had an overall accuracy of 96.1% and an area under the curve of 0.993. External validation and prospective study cohorts yielded consistent results. Finally, survival analysis demonstrated that age prediction ≥5 years vs chronologic age was associated with an independent 34% increased risk for death during follow-up (P < .001). Conclusions: Applying artificial intelligence to standard transthoracic echocardiography allows the prediction of sex and the estimation of age. Machine-based estimation is an independent predictor of overall survival and, with further evaluation, can be used for risk stratification and estimation of biological age.

Original languageEnglish
Pages (from-to)725-735
Number of pages11
JournalJournal of the American Society of Echocardiography
Volume37
Issue number8
DOIs
StatePublished - Aug 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2024 American Society of Echocardiography

Keywords

  • Artificial intelligence
  • Echocardiography
  • Longevity
  • Point-of-care ultrasound

Fingerprint

Dive into the research topics of 'Artificial Intelligence Assessment of Biological Age From Transthoracic Echocardiography: Discrepancies with Chronologic Age Predict Significant Excess Mortality'. Together they form a unique fingerprint.

Cite this