TY - JOUR
T1 - Approximate hierarchical facility location and applications to the bounded depth Steiner tree and range assignment problems
AU - Kantor, Erez
AU - Peleg, David
PY - 2009/9
Y1 - 2009/9
N2 - The paper concerns a new variant of the hierarchical facility location problem on metric powers (HFLβ [h]), which is a multi-level uncapacitated facility location problem defined as follows. The input consists of a set F of locations that may open a facility, subsets D1, D2, ..., Dh - 1 of locations that may open an intermediate transmission station and a set Dh of locations of clients. Each client in Dh must be serviced by an open transmission station in Dh - 1 and every open transmission station in Dl must be serviced by an open transmission station on the next lower level, Dl - 1. An open transmission station on the first level, D1 must be serviced by an open facility. The cost of assigning a station j on level l ≥ 1 to a station i on level l - 1 is ci j. For i ∈ F, the cost of opening a facility at location i is fi ≥ 0. It is required to find a feasible assignment that minimizes the total cost. A constant ratio approximation algorithm is established for this problem. This algorithm is then used to develop constant ratio approximation algorithms for the bounded depth Steiner tree problem and the bounded hop strong-connectivity range assignment problem.
AB - The paper concerns a new variant of the hierarchical facility location problem on metric powers (HFLβ [h]), which is a multi-level uncapacitated facility location problem defined as follows. The input consists of a set F of locations that may open a facility, subsets D1, D2, ..., Dh - 1 of locations that may open an intermediate transmission station and a set Dh of locations of clients. Each client in Dh must be serviced by an open transmission station in Dh - 1 and every open transmission station in Dl must be serviced by an open transmission station on the next lower level, Dl - 1. An open transmission station on the first level, D1 must be serviced by an open facility. The cost of assigning a station j on level l ≥ 1 to a station i on level l - 1 is ci j. For i ∈ F, the cost of opening a facility at location i is fi ≥ 0. It is required to find a feasible assignment that minimizes the total cost. A constant ratio approximation algorithm is established for this problem. This algorithm is then used to develop constant ratio approximation algorithms for the bounded depth Steiner tree problem and the bounded hop strong-connectivity range assignment problem.
KW - Approximation algorithms
KW - Facility location
KW - Range assignment
KW - Steiner trees
KW - Wireless networks
UR - http://www.scopus.com/inward/record.url?scp=67349228503&partnerID=8YFLogxK
U2 - 10.1016/j.jda.2008.11.006
DO - 10.1016/j.jda.2008.11.006
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:67349228503
SN - 1570-8667
VL - 7
SP - 341
EP - 362
JO - Journal of Discrete Algorithms
JF - Journal of Discrete Algorithms
IS - 3
ER -