Approximate hierarchical facility location and applications to the bounded depth Steiner tree and range assignment problems

Erez Kantor, David Peleg

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The paper concerns a new variant of the hierarchical facility location problem on metric powers (HFLβ [h]), which is a multi-level uncapacitated facility location problem defined as follows. The input consists of a set F of locations that may open a facility, subsets D1, D2, ..., Dh - 1 of locations that may open an intermediate transmission station and a set Dh of locations of clients. Each client in Dh must be serviced by an open transmission station in Dh - 1 and every open transmission station in Dl must be serviced by an open transmission station on the next lower level, Dl - 1. An open transmission station on the first level, D1 must be serviced by an open facility. The cost of assigning a station j on level l ≥ 1 to a station i on level l - 1 is ci j. For i ∈ F, the cost of opening a facility at location i is fi ≥ 0. It is required to find a feasible assignment that minimizes the total cost. A constant ratio approximation algorithm is established for this problem. This algorithm is then used to develop constant ratio approximation algorithms for the bounded depth Steiner tree problem and the bounded hop strong-connectivity range assignment problem.

Original languageEnglish
Pages (from-to)341-362
Number of pages22
JournalJournal of Discrete Algorithms
Volume7
Issue number3
DOIs
StatePublished - Sep 2009
Externally publishedYes

Keywords

  • Approximation algorithms
  • Facility location
  • Range assignment
  • Steiner trees
  • Wireless networks

Fingerprint

Dive into the research topics of 'Approximate hierarchical facility location and applications to the bounded depth Steiner tree and range assignment problems'. Together they form a unique fingerprint.

Cite this