Abstract
Predicting the answer to a product-related question is an emerging field of research that recently attracted a lot of attention. Answering subjective and opinion-based questions is most challenging due to the dependency on customer-generated content. Previous works mostly focused on review-aware answer prediction; however, these approaches fail for new or unpopular products, having no (or only a few) reviews at hand. In this work, we propose a novel and complementary approach for predicting the answer for such questions, based on the answers for similar questions asked on similar products. We measure the contextual similarity between products based on the answers they provide for the same question. A mixture-of-expert framework is used to predict the answer by aggregating the answers from contextually similar products. Empirical results demonstrate that our model outperforms strong baselines on some segments of questions, namely those that have roughly ten or more similar resolved questions in the corpus. We additionally publish two large-scale datasets1 used in this work, one is of similar product question pairs, and the second is of product question-answer pairs.
Original language | English |
---|---|
Title of host publication | NAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics |
Subtitle of host publication | Human Language Technologies, Proceedings of the Conference |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 242-253 |
Number of pages | 12 |
ISBN (Electronic) | 9781954085466 |
State | Published - 2021 |
Event | 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021 - Virtual, Online Duration: 6 Jun 2021 → 11 Jun 2021 |
Publication series
Name | NAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference |
---|
Conference
Conference | 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021 |
---|---|
City | Virtual, Online |
Period | 6/06/21 → 11/06/21 |
Bibliographical note
Publisher Copyright:© 2021 Association for Computational Linguistics.