Answering Product-Questions by Utilizing Questions from Other Contextually Similar Products

Ohad Rozen, David Carmel, Avihai Mejer, Vitaly Mirkis, Yftah Ziser

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Predicting the answer to a product-related question is an emerging field of research that recently attracted a lot of attention. Answering subjective and opinion-based questions is most challenging due to the dependency on customer-generated content. Previous works mostly focused on review-aware answer prediction; however, these approaches fail for new or unpopular products, having no (or only a few) reviews at hand. In this work, we propose a novel and complementary approach for predicting the answer for such questions, based on the answers for similar questions asked on similar products. We measure the contextual similarity between products based on the answers they provide for the same question. A mixture-of-expert framework is used to predict the answer by aggregating the answers from contextually similar products. Empirical results demonstrate that our model outperforms strong baselines on some segments of questions, namely those that have roughly ten or more similar resolved questions in the corpus. We additionally publish two large-scale datasets1 used in this work, one is of similar product question pairs, and the second is of product question-answer pairs.

Original languageEnglish
Title of host publicationNAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics
Subtitle of host publicationHuman Language Technologies, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages242-253
Number of pages12
ISBN (Electronic)9781954085466
StatePublished - 2021
Event2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021 - Virtual, Online
Duration: 6 Jun 202111 Jun 2021

Publication series

NameNAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference

Conference

Conference2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021
CityVirtual, Online
Period6/06/2111/06/21

Bibliographical note

Publisher Copyright:
© 2021 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'Answering Product-Questions by Utilizing Questions from Other Contextually Similar Products'. Together they form a unique fingerprint.

Cite this