Anomalous Fluctuations in the Orientation and Velocity of Swarming Bacteria

Shawn D. Ryan, Gil Ariel, Avraham Be'er

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Simultaneous acquisition of phase-contrast light microscopy and fluorescently labeled bacteria, moving within a dense swarm, reveals the intricate interactions between cells and the collective flow around them. By comparing wild-type and immotile cells embedded in a dense wild-type swarm, the effect of the active thrust generated by the flagella can be singled out. It is shown that while the distribution of angles among cell velocity, cell orientation, and the local flow around it is Gaussian-like for immotile bacteria, wild-type cells exhibit anomalous non-Gaussian deviations and are able to move in trajectories perpendicular to the collective flow. Thus, cells can maneuver or switch between local streams and jets. A minimal model describing bacteria as hydrodynamic force dipoles shows that steric effects, hydrodynamics interactions, and local alignments all have to be taken into account to explain the observed dynamics. These findings shed light on the physical mechanisms underlying bacterial swarming and the balance between individual and collective dynamics.

Original languageEnglish
Pages (from-to)247-255
Number of pages9
JournalBiophysical Journal
Volume111
Issue number1
DOIs
StatePublished - 12 Jul 2016

Bibliographical note

Publisher Copyright:
© 2016 Biophysical Society

Fingerprint

Dive into the research topics of 'Anomalous Fluctuations in the Orientation and Velocity of Swarming Bacteria'. Together they form a unique fingerprint.

Cite this