Abstract
The FastMap algorithm has been proposed as an inexpensive metric embedding which provides admissible distance estimates between all vertices in an embedding. As an embedding, it also supports additional operations such as taking the median location of two vertices, which is important in some problems. This paper studies several aspects of FastMap embeddings, showing the relationship of FastMap to general additive heuristics. As an admissible heuristic, FastMap is not as strong as previous suggested. However, by combining FastMap with the ideas of differential heuristics, we can significantly improve the performance of FastMap heuristics. We show the impact of these ideas in both single-agent pathfinding and the Multi-Agent Meeting problem, where the performance of algorithms using our improved FastMap embedding is improved by up to a factor of two.
Original language | English |
---|---|
Title of host publication | AAAI-23 Technical Tracks 10 |
Editors | Brian Williams, Yiling Chen, Jennifer Neville |
Publisher | AAAI press |
Pages | 12473-12481 |
Number of pages | 9 |
ISBN (Electronic) | 9781577358800 |
DOIs | |
State | Published - 27 Jun 2023 |
Externally published | Yes |
Event | 37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States Duration: 7 Feb 2023 → 14 Feb 2023 |
Publication series
Name | Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023 |
---|---|
Volume | 37 |
Conference
Conference | 37th AAAI Conference on Artificial Intelligence, AAAI 2023 |
---|---|
Country/Territory | United States |
City | Washington |
Period | 7/02/23 → 14/02/23 |
Bibliographical note
Publisher Copyright:Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.