Analytic methods to find beating transitions of asymmetric Gaussian beams in GNLS equations

David Ianetz, Jeremy Schiff

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


In a simple model of propagation of asymmetric Gaussian beams in nonlinear waveguides, described by a reduction to ordinary differential equations of generalized nonlinear Schrödinger equations with cubic-quintic (CQ) and saturable (SAT) nonlinearities and a graded-index profile, the beam widths exhibit two different types of beating behavior, with transitions between them. We present an analytic model to explain these phenomena, which originate in a 1:1 resonance in a 2 degree-of-freedom Hamiltonian system. We show how small oscillations near a fixed point close to 1:1 resonance in such a system can be approximated using an integrable Hamiltonian and, ultimately, a single first order differential equation. In particular, the beating transitions can be located from coincidences of roots of a pair of quadratic equations, with coefficients determined (in a highly complex manner) by the internal parameters and initial conditions of the original system. The results of the analytic model agree with the numerics of the original system over large parameter ranges, and allow new predictions that can be verified directly. In the CQ case, we identify a band of beam energies for which there is only a single beating transition (as opposed to 0 or 2) as the eccentricity is increased. In the SAT case, we explain the sudden (dis)appearance of beating transitions for certain values of the other parameters as the grade-index is changed.

Original languageEnglish
Article number013116
Issue number1
StatePublished - 1 Jan 2018

Bibliographical note

Publisher Copyright:
© 2018 Author(s).


Dive into the research topics of 'Analytic methods to find beating transitions of asymmetric Gaussian beams in GNLS equations'. Together they form a unique fingerprint.

Cite this