TY - JOUR
T1 - Analysis of thymic stromal cell subpopulations grown in vitro on extracellular matrix in defined medium. II. Cytokine activities in marine thymic epithelial and mesenchymal cell culture supernatants
AU - Eshel, Ilana
AU - Savion, Naphtali
AU - Shoham, Jacob
PY - 1990/3/1
Y1 - 1990/3/1
N2 - Two morphologically distinct primary cultures of murine thymic stroma were established and found to be of epithelial (MTEC) and mesenchymal (MTMC) origin. These cultures were generated by selective conditions of tissue disruption and were maintained on extracellular matrix in defined medium. Culture supernatants (CS) from these cultures (EC-CS and MC-CS respectively), were tested for cytokine production and for effects on thymocyte maturation. Both supernatants displayed the activities of IL-3 and of granulocyte/macrophage-CSF and not of IL-1, -2, -4, or IFN. In addition they were found to be mitogenic to murine thymocytes in a "spontaneous" [3H]TdR incorporation assay. The two supernatants differed, however, in their effect on Con A stimulation EC-CS had a strong enhancing effect, both when used for preincubation (18 h) before Con A stimulation or when present simultaneously with it. MC-CS had a small inconsistent effect under these conditions. Also EC-CS enhanced IL-2 and IL-3 production by thymocytes. The responsive thymocyte subpopulation was the one that does not bind peanut agglutinin. CS of an established thymic epithelial cell line displayed only part of these activities at a considerably lower level. CS from primary kidney cell culture was completely devoid of activity. The results suggest that primary thymic stromal cell cultures, cultivated under the defined conditions described here, may better preserve physiologic secretory activities, and probably also other cell functions, compared with established cell lines. Furthermore, the results are compatible with the hypothesis that the soluble factors, secreted by thymic stromal cells, are active on either very early or late stages of thymic differentiation, whereas the main intrathymic stages of differentiation are conceivable dependent primarily on direct contact with stromal cells.
AB - Two morphologically distinct primary cultures of murine thymic stroma were established and found to be of epithelial (MTEC) and mesenchymal (MTMC) origin. These cultures were generated by selective conditions of tissue disruption and were maintained on extracellular matrix in defined medium. Culture supernatants (CS) from these cultures (EC-CS and MC-CS respectively), were tested for cytokine production and for effects on thymocyte maturation. Both supernatants displayed the activities of IL-3 and of granulocyte/macrophage-CSF and not of IL-1, -2, -4, or IFN. In addition they were found to be mitogenic to murine thymocytes in a "spontaneous" [3H]TdR incorporation assay. The two supernatants differed, however, in their effect on Con A stimulation EC-CS had a strong enhancing effect, both when used for preincubation (18 h) before Con A stimulation or when present simultaneously with it. MC-CS had a small inconsistent effect under these conditions. Also EC-CS enhanced IL-2 and IL-3 production by thymocytes. The responsive thymocyte subpopulation was the one that does not bind peanut agglutinin. CS of an established thymic epithelial cell line displayed only part of these activities at a considerably lower level. CS from primary kidney cell culture was completely devoid of activity. The results suggest that primary thymic stromal cell cultures, cultivated under the defined conditions described here, may better preserve physiologic secretory activities, and probably also other cell functions, compared with established cell lines. Furthermore, the results are compatible with the hypothesis that the soluble factors, secreted by thymic stromal cells, are active on either very early or late stages of thymic differentiation, whereas the main intrathymic stages of differentiation are conceivable dependent primarily on direct contact with stromal cells.
UR - http://www.scopus.com/inward/record.url?scp=0025282749&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 2407782
AN - SCOPUS:0025282749
SN - 0022-1767
VL - 144
SP - 1563
EP - 1570
JO - Journal of Immunology
JF - Journal of Immunology
IS - 5
ER -