Abstract
The analysis of thin layers deposited on various substrates is widely employed in thickness monitoring, materials research and development and quality control. Measurements are often performed based on changes to acoustic resonance frequencies of quartz micro-balance devices. The technique is extremely sensitive, but it is restricted to hundreds of MHz frequencies and requires electrical connectivity. In this work we propose and demonstrate the analysis of elastic properties of thin layers deposited on surface acoustic wave-photonic devices in standard silicon-on-insulator. The devices operate at 2.4 GHz frequency, and their interfaces are fiber-optic. The radio-frequency transfer functions of the devices are modified by sub-percent level changes to the group velocity of surface acoustic waves following deposition of layers. Layers of aluminum oxide and germanium sulfide of thickness between 10-80 nm are characterized. The analysis provides estimates for Young’s modulus of the layers.
Original language | English |
---|---|
Pages (from-to) | 6949-6959 |
Number of pages | 11 |
Journal | Optics Express |
Volume | 30 |
Issue number | 5 |
DOIs | |
State | Published - 28 Feb 2022 |
Bibliographical note
Publisher Copyright:© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
Funding
Funders | Funder number |
---|---|
Horizon 2020 Framework Programme | 101001069 |