Abstract
Let f ∈ Cω(∂Bn), where Bn is the unit ball of ℂn. We prove that if a,b ∈ B̄n, a ≠ b, for every complex line L passing through one of a or b, the restricted function f{pipe}L∩∂Bn has a holomorphic extention to the cross-section L∩Bn, then f is the boundary value of a holomorphic function in Bn.
Original language | English |
---|---|
Pages (from-to) | 293-304 |
Number of pages | 12 |
Journal | Journal d'Analyse Mathematique |
Volume | 113 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2011 |
Bibliographical note
Funding Information:∗This work was partially supported by the grant from ISF (Israel Science Foundation) 688/08. Some of this research was done as a part of European Science Foundation Networking Program HCAA.
Funding
∗This work was partially supported by the grant from ISF (Israel Science Foundation) 688/08. Some of this research was done as a part of European Science Foundation Networking Program HCAA.
Funders | Funder number |
---|---|
Israel Science Foundation | 688/08 |