Abstract
When Functional Electrical Stimulation (FES) is used to restore movement in subjects with spinal cord injury (SCI), muscle stimulation patterns should be selected to generate accurate and efficient movements. Ideally, the controller for such a neuroprosthesis will have the simplest architecture possible, to facilitate translation into a clinical setting. In this study, we used the simulated annealing algorithm to optimize two proportional-derivative (PD) feedback controller gain sets for a 3-dimensional arm model that includes musculoskeletal dynamics and has 5 degrees of freedom and 22 muscles, performing goal-oriented reaching movements. Controller gains were optimized by minimizing a weighted sum of position errors, orientation errors, and muscle activations. After optimization, gain performance was evaluated on the basis of accuracy and efficiency of reaching movements, along with three other benchmark gain sets not optimized for our system, on a large set of dynamic reaching movements for which the controllers had not been optimized, to test ability to generalize. Robustness in the presence of weakened muscles was also tested. The two optimized gain sets were found to have very similar performance to each other on all metrics, and to exhibit significantly better accuracy, compared with the three standard gain sets. All gain sets investigated used physiologically acceptable amounts of muscular activation. It was concluded that optimization can yield significant improvements in controller performance while still maintaining muscular efficiency, and that optimization should be considered as a strategy for future neuroprosthesis controller design.
Original language | English |
---|---|
Pages (from-to) | 3692-3700 |
Number of pages | 9 |
Journal | Journal of Biomechanics |
Volume | 48 |
Issue number | 13 |
DOIs | |
State | Published - 15 Oct 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2015.
Funding
This project was funded by National Institutes of Health (NIH) fellowship # TRN030167 , NIH Training Grant # T32-EB004314 , and Ardiem Medical Arm Control Device Grant # W81XWH0720044 . The authors thank Joris Lambrecht for his 3D arm visualization software, Dr. Peter Cooman for his input on project planning, Dr. Steven Sidik for statistical analysis guidance, and the CWRU High Performance Computing Cluster group for assistance with running simulations.
Funders | Funder number |
---|---|
Ardiem Medical Arm Control Device | W81XWH0720044 |
National Institutes of Health | TRN030167 |
National Institute of Biomedical Imaging and Bioengineering | T32EB004314 |
National Institute of Child Health and Human Development | |
Eunice Kennedy Shriver National Institute of Child Health and Human Development | F31HD049326 |
Keywords
- Feedback control
- Functional electrical stimulation
- Human
- Musculoskeletal modeling and simulation
- Optimization
- Proportional-derivative
- Upper extremity