An online algorithm for large scale image similarity learning

Gal Chechik, Varun Sharma, Uri Shalit, Samy Bengio

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

86 Scopus citations

Abstract

Learning a measure of similarity between pairs of objects is a fundamental problem in machine learning. It stands in the core of classification methods like kernel machines, and is particularly useful for applications like searching for images that are similar to a given image or finding videos that are relevant to a given video. In these tasks, users look for objects that are not only visually similar but also semantically related to a given object. Unfortunately, current approaches for learning similarity do not scale to large datasets, especially when imposing metric constraints on the learned similarity. We describe OASIS, a method for learning pairwise similarity that is fast and scales linearly with the number of objects and the number of non-zero features. Scalability is achieved through online learning of a bilinear model over sparse representations using a large margin criterion and an efficient hinge loss cost. OASIS is accurate at a wide range of scales: on a standard benchmark with thousands of images, it is more precise than state-of-the-art methods, and faster by orders of magnitude. On 2.7 million images collected from the web, OASIS can be trained within 3 days on a single CPU. The non-metric similarities learned by OASIS can be transformed into metric similarities, achieving higher precisions than similarities that are learned as metrics in the first place. This suggests an approach for learning a metric from data that is larger by orders of magnitude than was handled before.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference
PublisherNeural Information Processing Systems
Pages306-314
Number of pages9
ISBN (Print)9781615679119
StatePublished - 2009
Externally publishedYes
Event23rd Annual Conference on Neural Information Processing Systems, NIPS 2009 - Vancouver, BC, Canada
Duration: 7 Dec 200910 Dec 2009

Publication series

NameAdvances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference

Conference

Conference23rd Annual Conference on Neural Information Processing Systems, NIPS 2009
Country/TerritoryCanada
CityVancouver, BC
Period7/12/0910/12/09

Fingerprint

Dive into the research topics of 'An online algorithm for large scale image similarity learning'. Together they form a unique fingerprint.

Cite this