TY - GEN
T1 - An online algorithm for large scale image similarity learning
AU - Chechik, Gal
AU - Sharma, Varun
AU - Shalit, Uri
AU - Bengio, Samy
PY - 2009
Y1 - 2009
N2 - Learning a measure of similarity between pairs of objects is a fundamental problem in machine learning. It stands in the core of classification methods like kernel machines, and is particularly useful for applications like searching for images that are similar to a given image or finding videos that are relevant to a given video. In these tasks, users look for objects that are not only visually similar but also semantically related to a given object. Unfortunately, current approaches for learning similarity do not scale to large datasets, especially when imposing metric constraints on the learned similarity. We describe OASIS, a method for learning pairwise similarity that is fast and scales linearly with the number of objects and the number of non-zero features. Scalability is achieved through online learning of a bilinear model over sparse representations using a large margin criterion and an efficient hinge loss cost. OASIS is accurate at a wide range of scales: on a standard benchmark with thousands of images, it is more precise than state-of-the-art methods, and faster by orders of magnitude. On 2.7 million images collected from the web, OASIS can be trained within 3 days on a single CPU. The non-metric similarities learned by OASIS can be transformed into metric similarities, achieving higher precisions than similarities that are learned as metrics in the first place. This suggests an approach for learning a metric from data that is larger by orders of magnitude than was handled before.
AB - Learning a measure of similarity between pairs of objects is a fundamental problem in machine learning. It stands in the core of classification methods like kernel machines, and is particularly useful for applications like searching for images that are similar to a given image or finding videos that are relevant to a given video. In these tasks, users look for objects that are not only visually similar but also semantically related to a given object. Unfortunately, current approaches for learning similarity do not scale to large datasets, especially when imposing metric constraints on the learned similarity. We describe OASIS, a method for learning pairwise similarity that is fast and scales linearly with the number of objects and the number of non-zero features. Scalability is achieved through online learning of a bilinear model over sparse representations using a large margin criterion and an efficient hinge loss cost. OASIS is accurate at a wide range of scales: on a standard benchmark with thousands of images, it is more precise than state-of-the-art methods, and faster by orders of magnitude. On 2.7 million images collected from the web, OASIS can be trained within 3 days on a single CPU. The non-metric similarities learned by OASIS can be transformed into metric similarities, achieving higher precisions than similarities that are learned as metrics in the first place. This suggests an approach for learning a metric from data that is larger by orders of magnitude than was handled before.
UR - http://www.scopus.com/inward/record.url?scp=77951458444&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:77951458444
SN - 9781615679119
T3 - Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference
SP - 306
EP - 314
BT - Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference
PB - Neural Information Processing Systems
T2 - 23rd Annual Conference on Neural Information Processing Systems, NIPS 2009
Y2 - 7 December 2009 through 10 December 2009
ER -