An oligonucleotide probe incorporating the chromophore of green fluorescent protein is useful for the detection of HER-2 mRNA breast cancer marker

Abed Saady, Verena Böttner, Melissa Meng, Eli Varon, Yaron Shav-Tal, Christian Ducho, Bilha Fischer

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Diagnosis and treatment of breast cancer can be greatly enhanced and personalized based on the quantitative detection of mRNA markers. Here, we targeted the development of a fluorescent oligonucleotide probe to detect specifically the HER-2 mRNA breast cancer marker. We have selected the chromophore of the Green Fluorescent Protein (GFP), 4-hydroxybenzylidene imidazolinone (HBI), as a fluorophore covalently bound to an oligonucleotide probe and potentially capable of intercalating within a probe-mRNA duplex. We first synthesized the two-ring scaffold of the HBI chromophore 5 and coupled it to 2′-deoxyuridine at C5-position via a 7-atom-spacer, to give 4. Indeed, in the highly viscous glycerol used to mimic the reduced conformational flexibility of the intercalated HBI, chromophore 4 displayed a quantum yield of 0.29 and brightness of 20600 M−1cm−1, while no fluorescent signal was observed in methanol. Next, we synthesized a 20-mer oligonucleotide probe incorporating 4 at position 6 (5′-CCCGTUTCAACAGGAGTTTC-3′), ONHBI, targeting nucleotides 1233–1253 of HER-2 mRNA. A 16-fold enhancement of ONHBI emission intensity upon hybridization with the complementary RNA vs that of the oligonucleotide probe alone indicated the presence of target oligonucleotide and proved the intercalation of the chromophore (quantum yield 0.52; brightness 23500 M−1cm−1). Even more, an 11-fold enhancement of ONHBI emission (quantum yield 0.50; brightness 23200 M−1cm−1) was observed when the probe was mixed with total RNA extract from a human cell line that has high levels of HER2 mRNA expression. Thus, we propose ONHBI as a promising probe potentially useful for the sensitive and specific detection of HER2 mRNA breast cancer marker.

Original languageEnglish
Pages (from-to)99-106
Number of pages8
JournalEuropean Journal of Medicinal Chemistry
Volume173
DOIs
StatePublished - 1 Jul 2019

Bibliographical note

Publisher Copyright:
© 2019 Elsevier Masson SAS

Fingerprint

Dive into the research topics of 'An oligonucleotide probe incorporating the chromophore of green fluorescent protein is useful for the detection of HER-2 mRNA breast cancer marker'. Together they form a unique fingerprint.

Cite this