TY - JOUR
T1 - An invariant theory approach for the unramified computation of Rankin-Selberg integrals for quasi-split SO2n×GLn
AU - Kaplan, Eyal
PY - 2010/8
Y1 - 2010/8
N2 - We compute the local integral, with unramified data, derived from the global Rankin-Selberg integral for SO2n×GLn, where SO2n is a quasi-split orthogonal group in 2. n variables over a number field. Our unramified computation is achieved by a new approach that uses Schur polynomials and a branching rule.
AB - We compute the local integral, with unramified data, derived from the global Rankin-Selberg integral for SO2n×GLn, where SO2n is a quasi-split orthogonal group in 2. n variables over a number field. Our unramified computation is achieved by a new approach that uses Schur polynomials and a branching rule.
KW - Littlewood-Richardson rule
KW - Rankin-Selberg integral
KW - Unramified computation
UR - http://www.scopus.com/inward/record.url?scp=77953020640&partnerID=8YFLogxK
U2 - 10.1016/j.jnt.2010.02.004
DO - 10.1016/j.jnt.2010.02.004
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:77953020640
SN - 0022-314X
VL - 130
SP - 1801
EP - 1817
JO - Journal of Number Theory
JF - Journal of Number Theory
IS - 8
ER -