TY - JOUR

T1 - An extremal problem for the geometric mean of polynomials

AU - Beller, E.

AU - Newman, D. J.

PY - 1973/7

Y1 - 1973/7

N2 - Let M0, n be the maximum of the geometric mean of all nth degree polynomials (equation omited) which satisfy |ak| = l, k=0, 1, …, n. We show the existence of certain polynomials Rn whose geometric mean is asymptotic to √n, thus proving that M0, n is itself asymptotic to √n.

AB - Let M0, n be the maximum of the geometric mean of all nth degree polynomials (equation omited) which satisfy |ak| = l, k=0, 1, …, n. We show the existence of certain polynomials Rn whose geometric mean is asymptotic to √n, thus proving that M0, n is itself asymptotic to √n.

UR - http://www.scopus.com/inward/record.url?scp=84966256548&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-1973-0316686-X

DO - 10.1090/S0002-9939-1973-0316686-X

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:84966256548

SN - 0002-9939

VL - 39

SP - 313

EP - 317

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

IS - 2

ER -