TY - JOUR
T1 - An extremal problem for the geometric mean of polynomials
AU - Beller, E.
AU - Newman, D. J.
PY - 1973/7
Y1 - 1973/7
N2 - Let M0, n be the maximum of the geometric mean of all nth degree polynomials (equation omited) which satisfy |ak| = l, k=0, 1, …, n. We show the existence of certain polynomials Rn whose geometric mean is asymptotic to √n, thus proving that M0, n is itself asymptotic to √n.
AB - Let M0, n be the maximum of the geometric mean of all nth degree polynomials (equation omited) which satisfy |ak| = l, k=0, 1, …, n. We show the existence of certain polynomials Rn whose geometric mean is asymptotic to √n, thus proving that M0, n is itself asymptotic to √n.
UR - http://www.scopus.com/inward/record.url?scp=84966256548&partnerID=8YFLogxK
U2 - 10.1090/S0002-9939-1973-0316686-X
DO - 10.1090/S0002-9939-1973-0316686-X
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84966256548
SN - 0002-9939
VL - 39
SP - 313
EP - 317
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
IS - 2
ER -