An efficient bicriteria algorithm for stable robotic flow shop scheduling

Ada Che, Vladimir Kats, Eugene Levner

Research output: Contribution to journalArticlepeer-review

31 Scopus citations


We consider a flow shop for processing single type of parts serviced by a single robot. The robot transportation times are allowed to have small perturbations. We treat the robotic flow shop scheduling problem considering stability of its schedule where the robot route is fixed and the processing durations of parts are to be specified from given intervals. The stability radius of a schedule is defined as the largest quantity of variations in the transportation times within which the schedule can still be executed as expected. We consider the bicriteria optimization problem which consists of minimizing the cycle time and maximizing the stability radius. The objective is to handle the two criteria simultaneously, that is, to find their Pareto front. We propose a new strongly polynomial algorithm for finding the minimum cycle times for all possible values of stability radius with time complexity of O(m4), where m is the number of processing machines in the flow shop. This implies that we can find the entire Pareto front of the problem in O(m4) time.

Original languageEnglish
Pages (from-to)964-971
Number of pages8
JournalEuropean Journal of Operational Research
Issue number3
StatePublished - 1 Aug 2017
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017 Elsevier B.V.


  • Cyclic scheduling
  • Parametric critical path algorithm
  • Robotic flow shop scheduling
  • Scheduling
  • Stability analysis


Dive into the research topics of 'An efficient bicriteria algorithm for stable robotic flow shop scheduling'. Together they form a unique fingerprint.

Cite this