An efficient algorithm for generalized polynomial partitioning and its applications

Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Joshua Zahl

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

In 2015, Guth proved that if S is a collection of n g-dimensional semi-algebraic sets in ℝd and if D ≥ 1 is an integer, then there is a d-variate polynomial P of degree at most D so that each connected component of ℝd \ Z(P) intersects O(n/Dd−g) sets from S. Such a polynomial is called a generalized partitioning polynomial. We present a randomized algorithm that computes such polynomials efficiently – the expected running time of our algorithm is linear in |S|. Our approach exploits the technique of quantifier elimination combined with that of ε-samples. We present four applications of our result. The first is a data structure for answering point-enclosure queries among a family of semi-algebraic sets in Rd in O(log n) time, with storage complexity and expected preprocessing time of O(nd+ε). The second is a data structure for answering range search queries with semi-algebraic ranges in O(log n) time, with O(nt+ε) storage and expected preprocessing time, where t > 0 is an integer that depends on d and the description complexity of the ranges. The third is a data structure for answering vertical ray-shooting queries among semi-algebraic sets in ℝd in O(log2 n) time, with O(nd+ε) storage and expected preprocessing time. The fourth is an efficient algorithm for cutting algebraic planar curves into pseudo-segments.

Original languageEnglish
Title of host publication35th International Symposium on Computational Geometry, SoCG 2019
EditorsGill Barequet, Yusu Wang
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771047
DOIs
StatePublished - 1 Jun 2019
Event35th International Symposium on Computational Geometry, SoCG 2019 - Portland, United States
Duration: 18 Jun 201921 Jun 2019

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume129
ISSN (Print)1868-8969

Conference

Conference35th International Symposium on Computational Geometry, SoCG 2019
Country/TerritoryUnited States
CityPortland
Period18/06/1921/06/19

Bibliographical note

Publisher Copyright:
© Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl.

Funding

Funding Pankaj K. Agarwal: P. Agarwal was supported by NSF under grants CCF-15-13816, CCF-15-46392, and IIS-14-08846, by an ARO grant W911NF-15-1-0408, and by BSF Grant 2012/229 from the U.S.-Israel Binational Science Foundation. Boris Aronov: B. Aronov was supported by NSF grants CCF-12-18791 and CCF-15-40656, and by grant 2014/170 from the US-Israel Binational Science Foundation. Esther Ezra: E. Ezra was supported by NSF CAREER under grant CCF:AF 1553354 and by Grant 824/17 from the Israel Science Foundation. Joshua Zahl: J. Zahl was supported by an NSERC Discovery grant. Pankaj K. Agarwal: P. Agarwal was supported by NSF under grants CCF-15-13816, CCF-15-46392, and IIS-14-08846, by an ARO grant W911NF-15-1-0408, and by BSF Grant 2012/229 from the U.S.-Israel Binational Science Foundation. Boris Aronov: B. Aronov was supported by NSF grants CCF-12-18791 and CCF-15-40656, and by grant 2014/170 from the US-Israel Binational Science Foundation. Esther Ezra: E. Ezra was supported by NSF CAREER under grant CCF:AF 1553354 and by Grant 824/17 from the Israel Science Foundation. Joshua Zahl: J. Zahl was supported by an NSERC Discovery grant.

FundersFunder number
U.S.-Israel Binational Science Foundation2014/170
US-Israel Binational Science FoundationAF 1553354
National Science FoundationCCF-15-46392, CCF-15-13816, CCF:AF 1553354, CCF-12-18791, IIS-14-08846, CCF-15-40656
Army Research OfficeW911NF-15-1-0408
Bloom's Syndrome Foundation2012/229
Natural Sciences and Engineering Research Council of Canada
United States-Israel Binational Science Foundation
Israel Science Foundation824/17

    Keywords

    • Polynomial partitioning
    • Quantifier elimination
    • Semi-algebraic range spaces
    • ε-samples

    Fingerprint

    Dive into the research topics of 'An efficient algorithm for generalized polynomial partitioning and its applications'. Together they form a unique fingerprint.

    Cite this