TY - JOUR
T1 - A κ-shell decomposition method for weighted networks
AU - Garas, Antonios
AU - Schweitzer, Frank
AU - Havlin, Shlomo
PY - 2012/8
Y1 - 2012/8
N2 - We present a generalized method for calculating the κ-shell structure of weighted networks. The method takes into account both the weight and the degree of a network, in such a way that in the absence of weights we resume the shell structure obtained by the classic κ-shell decomposition. In the presence of weights, we show that the method is able to partition the network in a more refined way, without the need of any arbitrary threshold on the weight values. Furthermore, by simulating spreading processes using the susceptibleinfectious-recovered model in four different weighted real-world networks, we show that the weighted κ-shell decomposition method ranks the nodes more accurately, by placing nodes with higher spreading potential into shells closer to the core. In addition, we demonstrate our new method on a real economic network and show that the core calculated using the weighted κ-shell method is more meaningful from an economic perspective when compared with the unweighted one.
AB - We present a generalized method for calculating the κ-shell structure of weighted networks. The method takes into account both the weight and the degree of a network, in such a way that in the absence of weights we resume the shell structure obtained by the classic κ-shell decomposition. In the presence of weights, we show that the method is able to partition the network in a more refined way, without the need of any arbitrary threshold on the weight values. Furthermore, by simulating spreading processes using the susceptibleinfectious-recovered model in four different weighted real-world networks, we show that the weighted κ-shell decomposition method ranks the nodes more accurately, by placing nodes with higher spreading potential into shells closer to the core. In addition, we demonstrate our new method on a real economic network and show that the core calculated using the weighted κ-shell method is more meaningful from an economic perspective when compared with the unweighted one.
UR - http://www.scopus.com/inward/record.url?scp=84865790046&partnerID=8YFLogxK
U2 - 10.1088/1367-2630/14/8/083030
DO - 10.1088/1367-2630/14/8/083030
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84865790046
SN - 1367-2630
VL - 14
JO - New Journal of Physics
JF - New Journal of Physics
M1 - 083030
ER -