Abstract
Introduction: Enterovirus infection has long been suspected as a possible trigger for type 1 diabetes. Upon infection, viral double-stranded RNA (dsRNA) is recognized by membrane and cytosolic sensors that orchestrate type I interferon signaling and the recruitment of innate immune cells to the pancreatic islets. In this context, adenosine deaminase acting on RNA 1 (ADAR1) editing plays an important role in dampening the immune response by inducing adenosine mispairing, destabilizing the RNA duplexes and thus preventing excessive immune activation. Methods: Using high-throughput RNA sequencing data from human islets and EndoC-βH1 cells exposed to IFNα or IFNγ/IL1β, we evaluated the role of ADAR1 in human pancreatic β cells and determined the impact of the type 1 diabetes pathophysiological environment on ADAR1-dependent RNA editing. Results: We show that both IFNα and IFNγ/IL1β stimulation promote ADAR1 expression and increase the A-to-I RNA editing of Alu-Containing mRNAs in EndoC-βH1 cells as well as in primary human islets. Discussion: We demonstrate that ADAR1 overexpression inhibits type I interferon response signaling, while ADAR1 silencing potentiates IFNα effects. In addition, ADAR1 overexpression triggers the generation of alternatively spliced mRNAs, highlighting a novel role for ADAR1 as a regulator of the β cell transcriptome under inflammatory conditions.
Original language | English |
---|---|
Article number | 1058345 |
Journal | Frontiers in Endocrinology |
Volume | 13 |
DOIs | |
State | Published - 28 Nov 2022 |
Bibliographical note
Publisher Copyright:Copyright © 2022 Szymczak, Cohen-Fultheim, Thomaidou, de Brachène, Castela, Colli, Marchetti, Levanon, Eizirik and Zaldumbide.
Funding
This research has been supported by the Israel Science Foundation (grant numbers 2039/20 and, 231/21 to EL), the DON Foundation and the Dutch Diabetes Research Foundation, JDRF and by IMI2-JU under grant agreement No 115797 (INNODIA) and No 945268 (INNODIA HARVEST). These joint undertakings receive support from the European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA), JDRF, and the Leona M. and Harry B. Helmsley Charitable Trust. DE acknowledges the support of grants from the Welbio-FNRS (Fonds National de la Recherche Scientifique) (WELBIO-CR-2019C-04), Belgium; the JDRF (3-SRA-2022-1201-S-B); the National Institutes of Health Human Islet Research Network Consortium on Beta Cell Death and Survival from Pancreatic β-Cell Gene Networks to Therapy [HIRN-CBDS]) (grant U01 DK127786). F.S. is supported by a Research Fellow (Aspirant) fellowship from the Fonds National de la Recherche Scientifique (FNRS, Belgium).
Funders | Funder number |
---|---|
IMI2-JU | 945268, 115797 |
National Institutes of Health | U01 DK127786 |
Leona M. and Harry B. Helmsley Charitable Trust | |
Horizon 2020 Framework Programme | |
European Federation of Pharmaceutical Industries and Associations | |
Juvenile Diabetes Research Foundation Netherlands | |
Fonds De La Recherche Scientifique - FNRS | 3-SRA-2022-1201-S-B, WELBIO-CR-2019C-04 |
Diabetes Fonds | |
Israel Science Foundation | 2039/20, 231/21 |
Stichting Diabetes Onderzoek Nederland |
Keywords
- RNA editing
- T1D (type 1 diabetes)
- beta cell (β cell)
- inflammation
- transcriptome