Adaptive zero-knowledge proofs and adaptively secure oblivious transfer

Yehuda Lindell, Hila Zarosim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

15 Scopus citations

Abstract

In the setting of secure computation, a set of parties wish to securely compute some function of their inputs, in the presence of an adversary. The adversary in question may be static (meaning that it controls a predetermined subset of the parties) or adaptive (meaning that it can choose to corrupt parties during the protocol execution and based on what it sees). In this paper, we study two fundamental questions relating to the basic zero-knowledge and oblivious transfer protocol problems: Adaptive zero-knowledge proofs: We ask whether it is possible to construct adaptive zero-knowledge proofs (with unconditional soundness). Beaver (STOC 1996) showed that known zero-knowledge proofs are not adaptively secure, and in addition showed how to construct zero-knowledge arguments (with computational soundness). Adaptively secure oblivious transfer: All known protocols for adaptively secure oblivious transfer rely on seemingly stronger hardness assumptions than for the case of static adversaries. We ask whether this is inherent, and in particular, whether it is possible to construct adaptively secure oblivious transfer from enhanced trapdoor permutations alone. We provide surprising answers to the above questions, showing that achieving adaptive security is sometimes harder than achieving static security, and sometimes not. First, we show that assuming the existence of one-way functions only, there exist adaptive zero-knowledge proofs for all languages in . In order to prove this, we overcome the problem that all adaptive zero-knowledge protocols known until now used equivocal commitments (which would enable an all-powerful prover to cheat). Second, we prove a black-box separation between adaptively secure oblivious transfer and enhanced trapdoor permutations. As a corollary, we derive a black-box separation between adaptively and statically securely oblivious transfer. This is the first black-box separation to relate to adaptive security and thus the first evidence that it is indeed harder to achieve security in the presence of adaptive adversaries than in the presence of static adversaries.

Original languageEnglish
Title of host publicationTheory of Cryptography - 6th Theory of Cryptography Conference, TCC 2009, Proceedings
Pages183-201
Number of pages19
DOIs
StatePublished - 2009
Event6th Theory of Cryptography Conference, TCC 2009 - San Francisco, CA, United States
Duration: 15 Mar 200917 Mar 2009

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume5444 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference6th Theory of Cryptography Conference, TCC 2009
Country/TerritoryUnited States
CitySan Francisco, CA
Period15/03/0917/03/09

Fingerprint

Dive into the research topics of 'Adaptive zero-knowledge proofs and adaptively secure oblivious transfer'. Together they form a unique fingerprint.

Cite this