Adaptive multi-robot coordination: A game-theoretic perspective

Gal A. Kaminka, Dan Erusalimchik, Sarit Kraus

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

23 Scopus citations

Abstract

Multi-robot systems researchers have been investigating adaptive coordination methods for improving spatial coordination in teams. Such methods adapt the coordination method to the dynamic changes in density of the robots. Unfortunately, while their empirical success is evident, none of these methods has been understood in the context of existing formal work on multi-robot learning. This paper presents a reinforcement-learning approach to coordination algorithm selection, which is not only shown to work well in experiments, but is also analytically grounded. We present a reward function (Effectiveness Index, EI), that reduces time and resources spent coordinating, and maximizes the time between conflicts that require coordination. It does this by measuring the resource-spending velocity. We empirically show its success in simulations of multi-robot foraging. In addition, we analytically explore the reasons that EI works well. We show that under some assumptions, spatial coordination opportunities can be modeled as matrix games in which the payoffs are directly a function of EI estimates. The use of reinforcement learning leads to robots maximizing their EI rewards in equilibrium. This work is a step towards bridging the gap between the theoretical study of interactions, and their use in multi-robot coordination.

Original languageEnglish
Title of host publication2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Pages328-334
Number of pages7
DOIs
StatePublished - 2010
Event2010 IEEE International Conference on Robotics and Automation, ICRA 2010 - Anchorage, AK, United States
Duration: 3 May 20107 May 2010

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Country/TerritoryUnited States
CityAnchorage, AK
Period3/05/107/05/10

Fingerprint

Dive into the research topics of 'Adaptive multi-robot coordination: A game-theoretic perspective'. Together they form a unique fingerprint.

Cite this