Abstract
As autonomous AI agents proliferate in the real world, they will increasingly need to cooperate with each other to achieve complex goals without always being able to coordinate in advance. This kind of cooperation, in which agents have to learn to cooperate on the fly, is called ad hoc teamwork. Many previous works investigating this setting assumed that teammates behave according to one of many predefined types that is fixed throughout the task. This assumption of stationarity in behaviors, is a strong assumption which cannot be guaranteed in many real-world settings. In this work, we relax this assumption and investigate settings in which teammates can change their types during the course of the task. This adds complexity to the planning problem as now an agent needs to recognize that a change has occurred in addition to figuring out what is the new type of the teammate it is interacting with. In this paper, we present a novel Convolutional-Neural-Network-based Change Point Detection (CPD) algorithm for ad hoc teamwork. When evaluating our algorithm on the modified predator prey domain, we find that it outperforms existing Bayesian CPD algorithms.
Original language | English |
---|---|
Title of host publication | Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 |
Editors | Sarit Kraus |
Publisher | International Joint Conferences on Artificial Intelligence |
Pages | 550-556 |
Number of pages | 7 |
ISBN (Electronic) | 9780999241141 |
DOIs | |
State | Published - 2019 |
Externally published | Yes |
Event | 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China Duration: 10 Aug 2019 → 16 Aug 2019 |
Publication series
Name | IJCAI International Joint Conference on Artificial Intelligence |
---|---|
Volume | 2019-August |
ISSN (Print) | 1045-0823 |
Conference
Conference | 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 |
---|---|
Country/Territory | China |
City | Macao |
Period | 10/08/19 → 16/08/19 |
Bibliographical note
Publisher Copyright:© 2019 International Joint Conferences on Artificial Intelligence. All rights reserved.
Funding
This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. LARG research is supported in part by NSF (IIS-1637736, IIS-1651089, IIS-1724157), ONR (N00014-18-2243), FLI (RFP2-000), ARL, DARPA, Intel, Raytheon, and Lockheed Martin. Peter Stone serves on the Board of Directors of Cogitai, Inc. The terms of this arrangement have been reviewed and approved by the University of Texas at Austin in accordance with its policy on objectivity in research.
Funders | Funder number |
---|---|
FLI | RFP2-000 |
National Science Foundation | IIS-1651089, IIS-1724157, IIS-1637736 |
Office of Naval Research | N00014-18-2243 |
Defense Advanced Research Projects Agency | |
Lockheed Martin | |
Intel Corporation | |
National Sleep Foundation | |
Association of Research Libraries | |
Army Research Laboratory | |
University of Texas at Austin |