TY - GEN
T1 - Accurate blur models vs. image priors in single image super-resolution
AU - Efrat, Netalee
AU - Glasner, Daniel
AU - Apartsin, Alexander
AU - Nadler, Boaz
AU - Levin, Anat
PY - 2013
Y1 - 2013
N2 - Over the past decade, single image Super-Resolution (SR) research has focused on developing sophisticated image priors, leading to significant advances. Estimating and incorporating the blur model, that relates the high-res and low-res images, has received much less attention, however. In particular, the reconstruction constraint, namely that the blurred and down sampled high-res output should approximately equal the low-res input image, has been either ignored or applied with default fixed blur models. In this work, we examine the relative importance of the image prior and the reconstruction constraint. First, we show that an accurate reconstruction constraint combined with a simple gradient regularization achieves SR results almost as good as those of state-of-the-art algorithms with sophisticated image priors. Second, we study both empirically and theoretically the sensitivity of SR algorithms to the blur model assumed in the reconstruction constraint. We find that an accurate blur model is more important than a sophisticated image prior. Finally, using real camera data, we demonstrate that the default blur models of various SR algorithms may differ from the camera blur, typically leading to over-smoothed results. Our findings highlight the importance of accurately estimating camera blur in reconstructing raw lowers images acquired by an actual camera.
AB - Over the past decade, single image Super-Resolution (SR) research has focused on developing sophisticated image priors, leading to significant advances. Estimating and incorporating the blur model, that relates the high-res and low-res images, has received much less attention, however. In particular, the reconstruction constraint, namely that the blurred and down sampled high-res output should approximately equal the low-res input image, has been either ignored or applied with default fixed blur models. In this work, we examine the relative importance of the image prior and the reconstruction constraint. First, we show that an accurate reconstruction constraint combined with a simple gradient regularization achieves SR results almost as good as those of state-of-the-art algorithms with sophisticated image priors. Second, we study both empirically and theoretically the sensitivity of SR algorithms to the blur model assumed in the reconstruction constraint. We find that an accurate blur model is more important than a sophisticated image prior. Finally, using real camera data, we demonstrate that the default blur models of various SR algorithms may differ from the camera blur, typically leading to over-smoothed results. Our findings highlight the importance of accurately estimating camera blur in reconstructing raw lowers images acquired by an actual camera.
UR - http://www.scopus.com/inward/record.url?scp=84898773505&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2013.352
DO - 10.1109/ICCV.2013.352
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84898773505
SN - 9781479928392
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 2832
EP - 2839
BT - Proceedings - 2013 IEEE International Conference on Computer Vision, ICCV 2013
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2013 14th IEEE International Conference on Computer Vision, ICCV 2013
Y2 - 1 December 2013 through 8 December 2013
ER -