Accelerated Thermal-Aging-Induced Degradation of Organometal Triiodide Perovskite on ZnO Nanostructures and Its Effect on Hybrid Photovoltaic Devices

S. Kumar, A. Dhar

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Organometal halide perovskite materials are presently some of the pacesetters for light harvesting in hybrid photovoltaic devices because of their excellent inherent electrical and optical properties. However, long-term durability of such perovskite materials remains a major bottleneck for their commercialization especially in countries with hot and humid climatic conditions, thus violating the international standards for photovoltaic technology. Albeit, TiO2 as an electron-transport layer has been well investigated for perovskite solar cells; the high-temperature processing makes it unsuitable for low-cost and large-scale roll-to-roll production of flexible photovoltaic devices. Herein, we have chosen low-temperature (<150 °C)-processable nanostructured ZnO as the electron-selective layer and used a two-step method for sensitizing ZnO nanorods with methylammonium lead iodide (MAPbI3) perovskite, which is viable for flexible photovoltaic devices. We have also elaborately addressed the effect of the annealing duration on the conversion of a precursor solution into the required perovskite phase on ZnO nanostructures. The investigations show that the presence of ZnO nanostructures accelerates the rate of degradation of MAPbI3 films under ambient annealing and thus requires proper optimization. The role of ZnO in enhancing the degradation kinetics of the perovskite layer has been investigated by X-ray photoelectron spectroscopy and a buffer layer passivation technique. The effect of the annealing duration of the MAPbI3 perovskite on the optical, morphological, and compositional behavior has been closely studied and correlated with the photovoltaic efficiency. The study captures the degradation behavior of the commercially interesting MAPbI3 perovskite on a ZnO electron-transport layer and thus can provide insight for developing alternative families of perovskite material with better thermal and environmental stability for application in low-cost flexible photovoltaic technology.

Original languageEnglish
Pages (from-to)18309-18320
Number of pages12
JournalACS Applied Materials and Interfaces
Volume8
Issue number28
DOIs
StatePublished - 20 Jul 2016
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2016 American Chemical Society.

Keywords

  • ZnO
  • degradation
  • organometal trihalide
  • solar cell
  • thermal instability

Fingerprint

Dive into the research topics of 'Accelerated Thermal-Aging-Induced Degradation of Organometal Triiodide Perovskite on ZnO Nanostructures and Its Effect on Hybrid Photovoltaic Devices'. Together they form a unique fingerprint.

Cite this