TY - JOUR
T1 - A spectral cocycle for substitution systems and translation flows
AU - Bufetov, Alexander I.
AU - Solomyak, Boris
N1 - Publisher Copyright:
© 2020, The Hebrew University of Jerusalem.
PY - 2020/9
Y1 - 2020/9
N2 - for substitution systems and translation flows, a new cocycle, which we call the spectral cocycle, is introduced, whose Lyapunov exponents govern the local dimension of the spectral measure for higher-level cylindrical functions. The construction relies on the symbolic representation of translation flows and the formalism of matrix Riesz products.
AB - for substitution systems and translation flows, a new cocycle, which we call the spectral cocycle, is introduced, whose Lyapunov exponents govern the local dimension of the spectral measure for higher-level cylindrical functions. The construction relies on the symbolic representation of translation flows and the formalism of matrix Riesz products.
UR - http://www.scopus.com/inward/record.url?scp=85095939089&partnerID=8YFLogxK
U2 - 10.1007/s11854-020-0127-2
DO - 10.1007/s11854-020-0127-2
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85095939089
SN - 0021-7670
VL - 141
SP - 165
EP - 205
JO - Journal d'Analyse Mathematique
JF - Journal d'Analyse Mathematique
IS - 1
ER -