TY - JOUR
T1 - A short synthesis and biological evaluation of potent and nontoxic antimalarial bridged bicyclic β-sulfonyl-endoperoxides
AU - Bachi, Mario D.
AU - Korshin, Edward E.
AU - Hoos, Roland
AU - Szpilman, Alex M.
AU - Ploypradith, Poonsakdi
AU - Xie, Suji
AU - Shapiro, Theresa A.
AU - Posner, Gary H.
PY - 2003/6/5
Y1 - 2003/6/5
N2 - The syntheses and in vitro antimalarial screening of 50 bridged, bicyclic endoperoxides of types 9-13 are reported. In contrast to antimalarial trioxanes of the artemisinin family, but like yingzhaosu A and arteflene, the peroxide function of compounds 9-13 is contained in a 2,3-dioxabicyclo[3.3.1]nonane system 6. Peroxides 9 and 10 (R1 = OH) are readily available through a multicomponent, sequential, free-radical reaction involving thiol-monoterpenes co-oxygenation (a TOCO reaction). β-Sulfenyl peroxides 9 and 10 (R1 = OH) are converted into β-sulfinyl and β-sulfonyl peroxides of types 11-13 by controlled S-oxidation and manipulation of the terthydroxyl group through acylation, alkylation, or dehydration followed by selective hydrogenation. Ten enantiopure β-sulfonyl peroxides of types 12 and 13 exhibit in vitro antimalarial activity comparable to that of artemisinin (IC50 = 6-24 nM against Plasmodium falciparum NF54). In vivo testing of a few selected peroxides against Plasmodium berghei N indicates that the antimalarial efficacies of β-sulfonyl peroxides 39a, 46a, 46b, and 50a are comparable to those of some of the best antimalarial drugs and are higher than artemisinin against chloroquine-resistant Plasmodium yoelii ssp. NS. In view of the nontoxicity of β-sulfonyl peroxides 39a, 46a, and 46b in mice, at high dosing, these compounds are regarded as promising antimalarial drug candidates.
AB - The syntheses and in vitro antimalarial screening of 50 bridged, bicyclic endoperoxides of types 9-13 are reported. In contrast to antimalarial trioxanes of the artemisinin family, but like yingzhaosu A and arteflene, the peroxide function of compounds 9-13 is contained in a 2,3-dioxabicyclo[3.3.1]nonane system 6. Peroxides 9 and 10 (R1 = OH) are readily available through a multicomponent, sequential, free-radical reaction involving thiol-monoterpenes co-oxygenation (a TOCO reaction). β-Sulfenyl peroxides 9 and 10 (R1 = OH) are converted into β-sulfinyl and β-sulfonyl peroxides of types 11-13 by controlled S-oxidation and manipulation of the terthydroxyl group through acylation, alkylation, or dehydration followed by selective hydrogenation. Ten enantiopure β-sulfonyl peroxides of types 12 and 13 exhibit in vitro antimalarial activity comparable to that of artemisinin (IC50 = 6-24 nM against Plasmodium falciparum NF54). In vivo testing of a few selected peroxides against Plasmodium berghei N indicates that the antimalarial efficacies of β-sulfonyl peroxides 39a, 46a, 46b, and 50a are comparable to those of some of the best antimalarial drugs and are higher than artemisinin against chloroquine-resistant Plasmodium yoelii ssp. NS. In view of the nontoxicity of β-sulfonyl peroxides 39a, 46a, and 46b in mice, at high dosing, these compounds are regarded as promising antimalarial drug candidates.
UR - http://www.scopus.com/inward/record.url?scp=0038440391&partnerID=8YFLogxK
U2 - 10.1021/jm020584a
DO - 10.1021/jm020584a
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 12773055
AN - SCOPUS:0038440391
SN - 0022-2623
VL - 46
SP - 2516
EP - 2533
JO - Journal of Medicinal Chemistry
JF - Journal of Medicinal Chemistry
IS - 12
ER -